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Anomauin. OOHi€I0 3 20106HUX 3a0ay OOCHIOHUKIG | po3poOHUKi6 wmyunozo inmenexkmy (L) € 3abe3ne-
YeHHS BIONOGIOHOCMI cucmeM NpasHeHHAM arooell, AKi 3 HUMU 63aemoditoms. L1 npobnema cmae we
CKAAOHIWION 018 cucmem, 01 AKUX PO3POONAIOMbCA GIACHI NPABUNA X YHKYIOHYBAHHA | 8 AKUX 3A0IAHI
KitbKka aeemmie. Y cmammi po3ensioaemocsi psod HACIOKIE GUKOPUCAHHS MemoOi6 2eHemuiHo-
2o/eniceHemuyH020 NPOEKMYBAHHS 34 YMO8, KOIU CMPYKMYpa KOHMPOI0 po3podascmbcs be3 be3nocepe-
OHbOI yuacmi moounu. Lle cmeoproe ocodbnusi mpyonowi y 3abesnedenti 6i0n08iOHOCMI NPOMOKOI6 KOH-
mpoaro 6axicanHam niobypro6auie i YVHUKHEHHs 3a80aHHA Henepedbawysanoi wkoou. Y pobomi maxoic
00CHI0IHCYIOMbCSL BURAOKU We DLIbUI020 YCKAAOHeHH s 3a0aui, koau cucmema LI mae 6acamo azenmis.
CyuacHi cucmemu Kepy8aHHs YACMO € O0eYeHMpPAaniz08anumMy, wo 3abesneyye Oinbui HadiliHe pilueHHs,
HIDIC NPU GUKOPUCMAHHT YEeHMPATbHO20 KoHmponepa. KoHkpemnum npuxiadom peanizayii ybo2o nioxooy
€ epynu, AKi CaMOOP2ani308yI0MbCs, i 8 AKUX a2eHmu OTIoMb He3ANeNCHO 8I0 YeHMPATbHO20 KOHMpPOoLo. 3
MOYKU 30pY BUPIBHIOBAHHS, Ye NOPOOACYE PO nesHux npodrem. B inmepecax nodunu nosunui diamu He
MINbKU OKpeMi azeHmu, aje i 2pyna sax Koaekmus. s 00Hopionoi epynu ye 0ocums CKIao0Ho, ajie Npono-
Uyl WoOO BUKOPUCTHANHS 2emepo2eHHOl noku wo He 6yno. Bynu i napasi npooogaicyromvcsa yucienti
00Cni0ICeH s MA OUCKYCII CMOCOBHO Mo2o, K cmeopumu 2n0oanviy emuxy LI ma sxy ¢hopmy eona mo-
JHce NPULIHAMU, dle npozpec HACnpasoi € Oyxce nogintbHUM. dacmrkoso ye nOACHIEMbC MUM, WO HABIMb
3azanvna dexnapayis npas aoo0UHU MAae pao Hedorikie. Vci kpainu, saxi nionucanu yro Hexnapayiro OOH,
86aDICAIOMb, WO BOHU NPUHAUMHI Hamazarombca ii peanizyeamu. [Ipome npobrema nonseac 8 ii muyma-
yeHHi, adaice b6azamo NIONUCAHMIB 88ANCAIOMb, WO [HWI nopywytoms ii nonoxcenus. Te s came cmocy-
embcsi | Oy0b-aK0i 3a2anvhoi yeoou npo emuxy LI Y yiti cmammi npononyemucs piuienHsi, 8 ikomy 06a30-
6a emuka cucmem LI xoua i € inousioyanvrolo, npome mae iono8i0amu SUMO2AM Y GURAOKAX 63AEMOOLL
3 iHwumuy ymeopenusamu LI abo arodvmu.

Knrouosi cnosa: cenemuuni/enicenemuuni anzopummu, supiseniosauns L1, emuxa L1I1.

Abstract. One of the major concerns of Al researchers and implementers is how to ensure that the systems
stay aligned with the aspirations of the humans they interact with. This problem becomes even more
complex for systems that develop their own operational rules and where multiple agents are involved. The
paper addresses some of the implications of using genetic/epigenetic design techniques where the control
structure is developed without direct human involvement. This presents particular difficulties in ensuring
that the control protocols stay aligned with the desires of the instigators and do not cause unpredicted
harm. It also explores how this problem is further complicated when the Al system has many agents.
Modern control systems are often decentralized which provides a more robust solution than using a
central controller. A specific example of this approach is Self-Organising Swarms where the agents act
independently of the central control. From an alignment point of view, it generates particular problems.
Not only must the individual agents act in the best human interest but the swarm as a collective must do it
as well. This is difficult for a homogeneous swarm and no proposal for a heterogeneous one has yet been
made. There have been and continue to be considerable research and discussions on how to create and
what form a global Al ethics might take, but any progress has been slow. This is partly because even the
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Universal Declaration of Human Rights has difficulties. All the nations that have signed up to the UN
Human Rights Declaration believe they are at least trying to implement it. The problem is in the
interpretation where many signatories believe others are in breach. The same would apply to any
universal Al ethics agreement. This paper proposes a solution where the Al systems’ basic ethics are
individual but have to comply where they interface with either other Al entities or humans.

Keywords: genetic/epigenetic algorithms, Al alignment, Al ethics.
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1. Introduction

Many researchers and scholars have expressed concern about how to ensure Artificial Intelligent
systems act in the best interests of humanity, often referred to as alignment. For example, the late
Stephen Hawking claimed on the BBC, “The development of full artificial intelligence could
spell the end of the human race.” [1] Views of this nature, whether well-founded or not, could
lead to restrictions being placed on Al research and implementation and even some Al systems
being banned. The concerns expressed by Hawking and others have led to the establishment of a
number of research organizations such as The Centre for the Study of Existential Risk [2] and
Future of Life Institute [3]. Most of these researchers, however, concentrate on the risks of Artifi-
cial General Intelligence and beyond which has yet to be proven feasible. In fact, even Low-
Level Artificial Intelligence which is already prevalent in our society presents significant risks
[4]. While they may not present an existential risk, the collapse of utilities such as power or water
systems could lead to significant loss of life and social disruption.

Many computer-based systems rely on distributed logic as it delivers significant ad-
vantages in robustness and this is the basis for swarm robotics. The problems with such systems
are that the control programming becomes extremely complex very quickly, so one has to utilize
automatic programming. In our case, we use Genetic algorithms modified by overlaying Epige-
netic algorithms. This, however, leads to a surrendering of direct control of the process, making it
hard to ensure alignment. For the “end”, this is manageable, but for the “means” which also have
to be aligned, this is much more difficult. “The end justifies the means” is not acceptable [5, 6].

The aim of this paper is to address some of the issues that will, however, require more
profound research and discussion before a practical solution is achieved. In the paper, we look at
some of the particular concerns associated with autonomous control development using genet-
ic/epigenetic self-learning systems. It also addresses the advantages of a local Al ethics over a
global one.

2. Control system for a self-organizing swarm

Self-organizing swarms operate with very little or no central control. As such, they have to struc-
ture their own tactics for completing a mission based on a set of rules. Though Reynolds [7]
demonstrated, a swarm could be made to function with only three simple rules in practice to carry
out a significant task, many more rules are required. As the task becomes more complex so the
number of rules tends to grow dramatically as is demonstrated when exploring granular compu-
ting in rule-based systems [8]. A complication is further added to if the environment is dynamic.
The classic method for addressing this problem is to use a behaviour-based method. It consists of
developing an initial model, its implementation, evaluation, and modification. This process can
continue until an acceptable solution is reached. The problem is that as the model gets more and
more complex, it becomes difficult to generate and understand it. Three methods are often used to
address this problem: Probabilistic Finite State Machine (PFSM), virtual physics-based design,
and stigmergy, but they all have limitations as the complexity grows and there are problems with
dynamic environments. An alternative approach is to allow the system to evolve to meet the re-
quirements. One way of achieving this, though it still has significant limitations, is to use genetic
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algorithms. This can, however, be improved by wrapping an epigenetic algorithm around the ge-
netic algorithm.

3. A genetic algorithm approach to improving behaviour

An evolutionary computational [9] approach for control system design is based on encoded char-
acteristics of the control strategies being grouped into artificial chromosomes [10]. Each chromo-
some represents some particular characteristic for each strategy. Its fitness value is evaluated
based on a given fitness function. The chromosomes (strategies) with high fitness value are al-
lowed to breed through the normal genetic operators of recombination, mutation, and selection.
Progenies with higher fitness ratings will replace the current ones with a lower fitness rating in
the population. The process is repeated until the fitness value of the new generation meets the
designated criterion. This method of generating control strategies in robotics is defined as Evolu-
tionary Robotics (ER) (see Fig. 1) [11].
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Figure 1 — Evolutionary Swarm Robotics from Nolfi et al., 2016

Despite the strength of this approach, it does present some fundamental issues. In Pure
Darwinian Evolution [12], fitness is almost completely driven by survival, with limited sexual
selection. So, for example, if a species lives on a volcanic island, some will evolve to take ad-
vantage of foraging in the shallow water, while some will develop the ability to climb and exploit
the volcanic slopes. If the sea level changes so that it rises until the island is submerged, those
adapted to mountain foraging will die, and the reverse is true if the sea recedes to the deep ocean.
If the process is slow, then they may adapt it, but this is not based on constant adaption to the
changing environment and has no element of prediction. Though Lamarck tried to address this
problem, it was only with the introduction of the concept of Epigenetics that a workable explana-
tion was found.

3.1. Deception

This is mainly due to the difficulty of determining a fitness function (objective function). In order
to determine whether an evolved chromosome is better than its parents a measure is required.
This has to be defined, and the selection of such a measure is not simple. Ideally, it is towards this
target the control system is evolving, so it must be a well-defined finish point that meets all the
requirements of the system. It is also important that it does not cause the system to migrate to a
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local solution. This is further complicated if the system that is being controlled is dynamic as the
desired objective function may also change.

3.2. Exploration and exploitation dilemma

This is a problem for all data search engines and is no less a problem for genetic algorithms. In
the present context, the problem is how long to continue searching for a better solution and when
to concentrate on improving the existing solution. To some extent, this is easy to control for a
genetic algorithm search as it is very dependent on the amount of mutation built into the algo-
rithm. Though while the control is relatively simple, the amount of exploration required is hard to
determine.

In multi-agent learning, one way to proceed is by utilizing an -greedy exploration meth-
od. Most of the time, with probability (1-¢), the algorithm exploits current best behaviour, but
once in a while, it explores randomly a behaviour with a small probability €. An alternative ap-
proach is to use a Boltzmann “SoftMax” approach. The exploitation of the current one and explo-
ration of an alternative behaviour are based on a parameter t to balance exploration and exploita-

tion. The probability P, of a chosen behaviour x4 among available behaviours (s, 4, 5, .. 14;)
in astate S denoted as:

ef(suui)/r

P=
2,y

Another method, proposed by Lehman and Stanley (2011), utilizes a novelty approach to
maintain diversity [13]. This approach utilizes how far apart one solution within a search space is
from the other possible solutions. The novelty value is assigned to a given solution by the sparse-
ness of behaviours within that section of the search space. The sparseness value p is an average
distance to the k-nearest neighbours p at a point x thus:

p(x) = %Zdist(x, ).

This approach also has the advantage of reducing the risk of generating a solution to a lo-
cal rather than a global goal.

3.3. Non-stationary behaviour

This is a particular problem when using genetic algorithms to develop control systems for distrib-
uted systems such as swarms. Each entity is free to evolve but it changes the relationship with all
the other agents which, in turn, alternates the appropriate function for all other agents. It is possi-
ble to obtain a functioning solution for homogenous swarms, but there exists no robust solution
for heterogeneous swarms.

3.4. The curse of dimensionality

Multi-agent systems that utilize learning mechanisms such as reinforcement learning which map
the state to find the best behaviour suffer from the “curse of dimensionality”. The calculated dis-
crete states of the environment resulting from reinforcement learning in multi-agent systems grow
exponentially with the increase of the number of agents. As the estimation increases for possible
discrete state or state-action pairs, the complexity of the computation process lies in choosing the
best behaviour or policy for the current state, which, of course, leads to longer computing time.
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4. The addition of an epigenetic layer

An epigenetics layer is developed as a tool to assist an agent in responding to an environmental
stimulus by modifying its phenotypic expression. It requires generating some type of regulatory
means for an agent that receives an input from the environment (external stimulus) to use to regu-
late genotypes as a form of expression regulation. In order to achieve this, an algorithm, based on
research work in biology, Sousa and Costa (2011) [14] proposed a method known as Epigenetic
Algorithm (EpiAL). According to the proposed model, the interaction between the agent-
environment is depicted in Fig. 2.

Agent

AR
Stimulus =) Sensor —)‘“

Figure 2 — EpiAL Conceptual Model (Sousa and Costa (2011))

An EpiAL model is composed of two fundamental entities — the agent and the environ-
ment. The Agent receives external stimulus from the environment. The stimulus is passed to an
epigenetic layer which acts as a regulatory structure. The appropriate genetic codes are selected
and regulated; the selected genetic codes are expressed, which modifies the current behaviour of
the agent. After each cycle of the EpiAL algorithm, the performance of the behaviour is measured
to calculate the relation between stimulus and the genetic codes defined as a methylation value.
This methylation value is used to evaluate the weights of the epigenetic algorithm. This allowed
representation of the regulatory function of epigenetic layer to be mapped into a mathematical
model able to respond to a dynamic stimulus from the environment. Similar works in other stud-
ies also demonstrate the validity of this approach [15-17]. Fig. 3 represents the translation of the
environment state to behavioural spaces [17]. The behavioural space contains the expressions
composed of genes selected by the epigenetic layer.

Environment y N

'Behaviour |
State 1 ‘ 1

- p—

-

N

State 2 ! Epigenetic ———— Behaviour
\ Layer | i

State 3 Behaaviour

Figure 3 — Epigenetic layer map of the environment state to behavioural spaces translation
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The regulatory function of epigenetic layer is based on the knowledge of sensed external
stimulus from the environment. A temporal and spatial knowledge of the dynamic environment
can be obtained through a trial-and-error approach. The behaviour in each interaction phase is
evaluated and rewarded based on its performance in the current environmental state. The generat-
ed rewards are used as a basis of a relationship between individual agent’s behaviours and envi-
ronmental states. This generates a regulatory function for selecting a set of genetic codes that
leads to a behaviour that creates a maximum reward for an environmental state. The model of this
mechanism is depicted in Fig. 4.

Environment
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State 2 Behaviour
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Figure 4 — Learning mechanism for epigenetic layer [18]

While this works quite well in practice, the main problem results in trying to evaluate the
environment with a very limited sensor array. One way of improving this situation is to allow the

system to learn as it progresses by embedding a state observer into the epigenetic layer. This
leads to a process as displayed in Fig. 5.
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Figure 5 — Cascade learning for epigenetic layer [18]
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5. Managing Alignment with an Evolving System

There are a number of possible approaches to this problem [19], but in practice, there are only
two currently available methods. One of them is to imbed a human within the system to take ac-
tion when some behaviour occurs that is not acceptable. This is akin to the role an airline pilot
performs, where a largely autonomous system is constantly monitored, and if the skilled pilot is
concerned, control is reverted to the human. The second approach is to have an external monitor
who ensures that there will be no misalignment issues, which is akin to a regulator. This is a simi-
lar approach to that adopted by the launch crew of a space vehicle. The setup includes the ex-
pected value of each parameter being monitored, structural loads, flight dynamics, various tem-
peratures, life indicators, etc. A track of the expected performance is generated before the flight
and displayed to a specialist on a screen as a line with the indicated tolerance. As the flight pro-
gresses, there is generated a line of the actual parameter called a worm. The specialist watches the
screen and if an abnormality occurs informs the mission controller. If a track exceeds the toler-
ance, the range safety officer may abort the mission. The problem with both these methods is that
they are extremely slow in terms of computer speed, and they really work only on systems that,
when deployed, retain the original behaviour.

There are two ways of evolving a system, either online or offline. In the offline case, a
simulation is used to develop for the mission a workable solution, and once the solution is ob-
tained, it is applied to the real-world problem, but this, of course, limits possible further im-
provements. This can, to some extent, be addressed by generating a digital twin that can be al-
lowed to evolve until a significant advantage is achieved over the operational system when the
newly developed variables and rules can be applied [20]. This evaluation is, of course, carried out
by skilled human analysts and can cause delays in implementation. The alternative is to use
online evolution. This has major advantages, particularly in a rapidly changing environment but
to date, no one has achieved an acceptable working model with the guaranteed safety required,
though there are numerous attempts to imbue artificial intelligence with an ethical response. The
risks are still deemed too high to apply such a system in a working environment.

6. Alignment

Alignment is the term used to show that computer-based systems act in the best interests of hu-
manity. In practice, this is quite hard to achieve, partly because it is very hard to quantify the best
interests of humanity. A nation may honestly believe its weapon systems are in the interests of
humanity as they prevent other nations or entities from taking action against them but other na-
tions take a very different view. This is clearly represented by the US use of drones.

6.1. Potential in-built alignment for Al systems

The most common current approach to this problem is to try to build into systems acceptable eth-
ics. Though Isaac Asimov’s three laws [21], namely: (1) a robot may not injure a human being or,
through inaction, allow a human being to come to harm; (2) a robot must obey the orders given it
by human beings except where such orders would conflict with the First Law; (3) a robot must
protect its own existence as long as such protection does not conflict with the First or Second
Law. All these can be seen as an interesting starting point, the problem is the definition of “harm”
in the first law. It also offers no protection of sentient entities undefined as humans. In practice,
there have been many attempts to define an ethical structure for artificial systems, one of the most
significant being work done by the IEEE [22, 23]. The major problem with this approach is that
there is no universal set of ethics that humans subscribe to. All communities, from families to
nations, have an ethical structure that they believe to be superior. Thus it is extremely difficult, if
not impossible, to create a set of ethical behaviours that all could accept. Even if it were possible,
it would force the uniformity on human behaviour which would reduce valua
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ble diversity. This does not mean that it is impossible for artificial intelligence to act in the best
human interest or at least in the best human interest of those who commission the system. Human
society does this all the time, leading to individuals and nations being able to cooperate despite
different ethical beliefs [24, 25].

6.2. How alignment might be achieved

One possible solution is to draw a distinction between the internal and external practices of an Al
system. The main concerns with alignment only occur when the Al system interacts with the real
world. As in human society, one’s internal value system becomes relevant to other humans only
at the interface. In human societies, we set a framework of laws that moderate this interaction.
There are a number of such systems that perform quite successfully. The rules of engagement,
deployed by military forces, are the ones that such system codified in the Geneva Conventions
[26]. Another is the World Trade Organisation [27] which polices the rules of trade as established
by the Marrakesh Declaration. It allows countries with vastly different ethical structures to con-
duct trade in a sustainable manner perceived to be fair to the participants. All such frameworks
have elements that are regarded as compromises by different participants, but, what is most im-
portantly, these systems work. Both these have in common is that they operate between entities
with very different and often hostile world views. Perhaps the simplest example of how this
might be applied is the self-driving car which, whatever its internal Al structure, is expected to
adhere to the rules of the road. Of course, this does not define any actions outside the ruleset,
which will depend on its internal ethics, but this is true for human drivers as well.

6.3. Producing a set of rules of engagement

It should be possible to set the appropriate rules of engagement for any interface using some form
of directed deep learning. The learning algorithm would be directed to explore the outcome
space, as in reinforcement learning. It would then be guided to evaluate which outcomes were not
acceptable based on a number of criteria. It should then be possible after training for the program
to determine which rules should apply for a particular unanticipated situation. This should lead to
the possibility of judging which variables and values are acceptable within the Al system. From a
swarm point of view, the boundary would depend on its nature. For a homogeneous swarm, the
rule-driven boundary would be expected to be where the swarm interacted with the environment,
while for a heterogeneous swarm, there would also be expected to be at the boundary between the
agents.

7. Conclusion

This paper should not be perceived as a solution to the alignment problem. At best, it is an at-
tempt to explore the problem and propose possible solutions. Much more refinement will be re-
quired before the solution proposed is proven to be valid. A great deal of further research will
also be required. However, it does offer an alternative to the building of a global Al ethical stand-
ard which looks to be impossible.
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