
© Samoylenko H.T., Selivanova A.V., 2023 51
ISSN 1028-9763. Математичні машини і системи. 2023. № 3

https://orcid.org/0000-0002-9374-2833

https://orcid.org/0000-0001-6559-1508

UDC 004.273

H.T. SAMOYLENKO*, A.V. SELIVANOVA*

FEATURES OF MICROSERVICES ARCHITECTURE IN E-COMMERCE SYSTEMS

*State University of Trade and Economics, Kyiv, Ukraine

Анотація. Розробка архітектури інформаційних систем для електронної торгівлі є важливим

завданням для підприємств у сучасному цифровому середовищі. У статті проводиться порівняння

різних типів архітектур інформаційних систем, що використовуються в електронній торгівлі. У

статті розглянуто особливості електронної торгівлі та специфіку веб-додатків, що підтриму-

ють ведення електронного бізнесу. Охарактеризовано традиційну монолітну архітектуру, мікро-

сервісну архітектуру та сервер-безсерверну (serverless) архітектуру, визначено їх переваги і недо-

ліки. Досліджено технологічні рішення в галузі розробки електронної комерції з метою подальшо-

го створення ефективної та зручної платформи для користувачів. У роботі визначено такі клю-

чові аспекти архітектур, як масштабованість, гнучкість, швидкість розгортання та управління,

надійність та вартість розробки й експлуатації систем. Проаналізовано вплив кожного типу

архітектури на продуктивність і відповідність бізнес-потребам у галузі електронної торгівлі.

Проведений аналіз допоможе створити або модернізувати інформаційну систему для електронної

торгівлі, допомагаючи зробити обґрунтований вибір архітектурного підходу. У статті визначено

переваги й недоліки мікросервісної архітектури побудови веб-застосунків електронної торгівлі,

зокрема, на базі фреймворку Spring Boot. У статті досліджено, як мікросервіси можуть забезпе-

чити модульність та полегшити розробку, розгортання й підтримку веб-застосунків електронної

торгівлі. Проаналізовано недоліки мікросервісної архітектури, зокрема, складність управління та

взаємодії між сервісами, а також необхідність вирішення проблеми консистентності даних та

керування транзакціями в розподілених середовищах. Розглянуто можливі підходи та технічні

засоби для подолання цих проблем у контексті веб-застосунків електронної торгівлі на базі Spring

Boot.

Ключові слова: архітектура інформаційних систем, мікросервісна архітектура, фреймворки.

Abstract. The development of information system architectures for e-commerce is a crucial task for busi-

nesses in today's digital environment. This article presents a comparative analysis of different types of

information system architectures used in e-commerce. The paper examines the specific characteristics of

e-commerce and the requirements of web applications that support electronic business operations. Tradi-

tional monolithic architecture, microservices architecture, and serverless architecture have been charac-

terized, and their advantages and disadvantages have been identified. Technological solutions in the field

of e-commerce development have been studied to create an efficient and user-friendly platform. The arti-

cle highlights such key architectural aspects as scalability, flexibility, deployment speed and management,

reliability, and development and operational costs. The impact of each architecture type on performance

and alignment with e-commerce business needs has been analyzed. This analysis will assist in the creation

or modernization of information systems for e-commerce, enabling an informed choice of architectural

approach. The article specifically examines the advantages and disadvantages of microservices architec-

ture for developing e-commerce web applications, particularly using the Spring Boot framework. It ex-

plores how microservices can provide modularity and facilitate the development, deployment, and mainte-

nance of e-commerce web applications. Such challenges of microservices architecture as managing and

coordinating services, as well as addressing data consistency and transaction management in distributed

environments have been discussed. Some possible approaches and technical tools to overcome these chal-

lenges in the context of e-commerce web applications based on Spring Boot have been considered.

Keywords: information system architecture, microservices architecture, frameworks.

https://orcid.org/0000-0002-9374-2833
https://orcid.org/0000-0001-6559-1508

52 ISSN 1028-9763. Математичні машини і системи. 2023. № 3

DOI: 10.34121/1028-9763-2023-3-51-58

1. Introduction

Electronic commerce (e-commerce) has rapidly emerged as a prominent phenomenon in business

and overall economic activity within a relatively short period of time. It can be conducted across

various networks, not necessarily limited to the Internet. E-business, on the other hand, refers to

business operations that utilize global information systems. In other words, it represents a form of

conducting business where a significant portion of activities is performed using information tech-

nology. The key components of e-business include internal organization within a company based

on a unified information network, as well as external interactions with partners, suppliers, and

customers facilitated through the Internet.

Elements of e-business began to appear in the activities of companies starting from the

1960s. These included automated business systems such as Electronic Data Interchange (EDI),

Electronic Fund Transfer (EFT), and Enterprise Resource Planning (ERP). Thus, e-business en-

compasses all forms of electronic business activities within production and organizational rela-

tionships among employees within a single company, between different companies, government

bodies, scientific and educational institutions, cultural organizations, non-profit entities, and pub-

lic organizations.

The Internet, in particular, has played a crucial role in driving the further development of

e-commerce. It has expanded the scope of e-commerce not only for large corporations and small-

to-medium-sized enterprises but also for individual users. As a result, it has opened up opportuni-

ties to engage a significantly broader audience of suppliers and consumers. However, in many

cases, the definitions and metrics of electronic commerce have been formulated for marketing

purposes rather than for conducting quantitative measurement or scientifically grounded analysis

of this phenomenon.

The aim of the article is to analyze and justify the application of microservices architec-

ture in electronic commerce systems.

2. Results of the research

Over the past few years, web application architecture has undergone significant changes, and new

approaches and technologies have emerged. One of the most important choices that developers

have to make is the choice of architecture, as it has a decisive impact on the application’s perfor-

mance, scalability, and ease of maintenance. Currently, the three most popular architectural op-

tions are monolithic architecture, microservices architecture, and serverless architecture. Each of

these architectures has its own advantages and disadvantages, and the choice of a specific archi-

tecture depends on the needs and constraints of the specific project [1, 2].

Monolithic architecture is a traditional approach where the entire application is deployed

as a single unit. It is a straightforward approach that is easy to develop and deploy, but large

monolithic applications can become complex to understand and maintain over time. The entire

application runs within a single process and uses a shared database. The codebase contains all the

components such as the user interface, business logic, and database access configuration, which

are executed within a single executable file. The main advantages of monolithic architecture lie in

the simplicity of development and deployment as all the components are deployed together. It

also simplifies debugging and scaling of the application as all parts interact without calling exter-

nal services. Additionally, developing within a single codebase reduces overhead costs associated

with communication and integration between components. However, monolithic architecture may

have certain drawbacks. Making changes to one part can affect the rest of the system, which can

be problematic. Moreover, scaling individual components may be limited as the entire application

functions as a single unit.

ISSN 1028-9763. Математичні машини і системи. 2023. № 3 53

Microservices architecture involves breaking down an application into small, independent

services that interact with each other. This allows for flexible scaling of individual components

and quick changes to specific services. However, it can lead to complexity in managing multiple

services and their interactions. Microservices architecture offers numerous advantages, including

scalability and flexibility. Since each microservice is a self-contained unit, it can be scaled inde-

pendently of other microservices, making it easier to handle increased traffic or load. Additional-

ly, microservices can be written in different programming languages and utilize different tech-

nologies, making them a flexible choice for developers. Another advantage of microservices ar-

chitecture is the simplification of deployment and testing processes. Each microservice can be

deployed and tested independently, reducing the risk of errors. Furthermore, updates or changes

to a microservice only require the compilation and deployment of that specific microservice ra-

ther than the entire application.

«Serverless» architecture is based on the use of cloud services to deploy and execute code

without the need to manage infrastructure. This allows developers to focus on building function-

ality without the overhead of server configuration and maintenance. However, this approach can

be limited in terms of supporting certain technologies and can be complex when it comes to

measuring and controlling costs. Serverless architecture is a methodology for creating and de-

ploying web applications without directly using servers. Instead of traditional server manage-

ment, developers can create and launch their programs on serverless platforms such as AWS

Lambda, Azure Functions, or Google Cloud Functions. These platforms offer pay-per-use pricing

for computational resources, allowing for cost optimization. One of the key advantages of server-

less architecture is its cost-effectiveness. Additionally, these platforms take responsibility for

scaling, managing, and securing the infrastructure, potentially reducing operational costs. Anoth-

er advantage of serverless solutions is their ability to accelerate the development process. Devel-

opers can focus on writing application code without spending time on server management. Scala-

bility is also an important advantage of serverless architecture. The platform automatically scales

the program based on request volume, making it easier to handle increased traffic or load. How-

ever, there are some drawbacks to serverless solutions. The increased latency can occur due to the

need to launch new instances of the program with each user request. Additionally, detecting and

resolving errors can be more challenging as the application is distributed across multiple inde-

pendent services. The choice of web application architecture depends on the specific needs of

your project, its size, and the constraints imposed by project requirements.

3. Materials and methods

The simplest way of communication between microservices is through synchronous HTTP re-

quests. In this case, one service simply calls another service, often using REST API. The first

service initiates the call to the second service, waits for the second service to process the request,

receives a response, and performs further application logic based on that response. In this way,

services communicate with each other by passing data and requesting processing results. There is

another method of communication between microservices that involves asynchronous communi-

cation through specialized software called message brokers. Some of the well-known brokers

include Kafka, RabbitMQ, and ActiveMQ. The role of a message broker is to receive a message

from a producer and deliver it to a consumer. There are many different implementations of this

concept, allowing developers to choose a specific broker and configure it based on the require-

ments of their tasks. For example, RabbitMQ is an open-source platform written in Erlang. It uses

a queue as a data structure where messages are processed following the FIFO (First-In-First-Out)

discipline, implementing a non-priority queue. On the other hand, Kafka has a more complex

structure known as a topic, which is divided into several partitions where data can be replicated.

A Kafka topic resembles a table in a database. Messages in Kafka can be retained even after be-

ing received by a consumer for a certain period defined by the developer. The more complex

54 ISSN 1028-9763. Математичні машини і системи. 2023. № 3

structure of Kafka provides more configuration options, but not all tasks require message replica-

tion or retention, giving developers a wide choice of brokers to use in their systems.

An application with a microservices architecture often utilizes multiple services to exe-

cute specific business logic, similar to how a monolith can invoke different modules when receiv-

ing a request from a user, involving various parts of the program and data stored in different ta-

bles. For instance, let’s consider an application representing a hypothetical online computer

hardware store. A user submits a request to purchase 10 laptops for a total of $20,000. During the

processing of this request, the system needs to verify that these 10 laptops are available in stock

and that the user has the necessary funds to complete the payment. If both checks succeed, the

system should reserve the laptops and block the funds in the user’s account. This task can be easi-

ly accomplished within a single transaction in the database. Relational databases are known to

have ACID properties – atomicity, consistency, isolation, and durability. This means that at any

given moment, the system will be in a consistent state. Therefore, if the system reserves 10 lap-

tops and the subsequent database query indicates that the user does not have the corresponding

amount in their account, the transaction will be rejected, and the system will return to its initial

state. Thus, such a user request does not pose problems when there is a monolithic architecture

utilizing a relational database.

However, microservices architecture does not inherently provide automatic consistency.

Each service is a separate isolated program that has access only to its own database. The principle

of single responsibility requires introducing three services in the system: an order service, a

warehouse service, and a user service. They need to synchronize their data to achieve «eventual

consistency». This means that at a certain point in time, the system may be in an inconsistent

state but will eventually reach consistency. For example, if the warehouse service successfully

reserves 10 laptops but the user service returns a response different from positive (insufficient

funds in the user's account), the reservation will be canceled. This problem can be addressed us-

ing the Saga pattern which has two implementations [2].

The first implementation involves having an orchestrator service that manages the execu-

tion of transactional steps with the corresponding services. The user's request is initially sent to

the orchestrator which ensures that all the services have positive results. If any of the services has

an error, the orchestrator sends a command to all other services to undo the changes made during

the transaction. Thus, the system may be in an inconsistent state for a period of time, but thanks

to the orchestrator's work, the transaction will either be completed or all the changes will be

rolled back. Communication between services is typically carried out using HTTP requests. The

second implementation utilizes a compensation mechanism where each action that modifies the

system's state is accompanied by a corresponding compensating action that reverses the changes

if something goes wrong. Both implementations of the Saga pattern allow for avoiding situations

where the system remains in an inconsistent state. Either all changes made during the transaction

are rolled back, or the transaction is successfully completed, bringing the system to a consistent

state. The compensation mechanism or orchestrator helps to achieve this behavior in micro-

services architecture. The orchestrator is a central service that manages the execution of transac-

tional steps. Each service communicates with the orchestrator before executing a step to obtain its

approval. If an error occurs at any step, the orchestrator sends a command to other services to

undo the changes that have already been made. This approach ensures a consistent system state

but requires more communication with the orchestrator. The compensation mechanism is used to

undo changes that have already been made in case of an error. Each transaction step is accompa-

nied by a corresponding compensating step that restores the system to its previous state. When an

error occurs, compensating actions are performed, ensuring the consistency of the system. This

approach may be simpler to implement but requires additional code for compensating actions.

ISSN 1028-9763. Математичні машини і системи. 2023. № 3 55

4. Designing

Developing an e-commerce application using a microservices architecture involves the following

steps:

Requirements analysis. Identify the functional requirements of the system. Determine the

types of products or services that will be available for purchase. Define the required payment and

delivery processes. Identify the types of users who will interact with the system. This will help

you determine the core components of the application.

Microservices decomposition. Identify the key functional components of the application

and break them down into separate microservices. For example, this could include microservices

for product catalogs, purchasing and payment, user management, and more. Each microservice

should perform a specific function and have its own database.

Microservice development. Develop each microservice separately using appropriate tech-

nologies and frameworks such as Spring Boot or Node.js. Each microservice should have its own

API for communication with other services and external clients.

Transaction management. In e-commerce, it is important to have mechanisms for manag-

ing transactions to ensure data consistency during purchase and payment operations. To ensure

the atomicity of operations, a transaction coordinator such as Spring Cloud Netflix or Apache

Kafka can be used.

Authentication and authorization. Implement mechanisms for authentication and authori-

zation to secure access to your application and restrict user privileges. For example, you can use

token-based authentication (JWT) and authorization mechanisms such as roles or permissions.

Scalability. Plan for scaling your application, especially during peak loads when the num-

ber of users and transactions increases. Consider using techniques like load balancing and hori-

zontal scaling to handle increased traffic.

Monitoring and logging. Configure a monitoring and logging system to track the perfor-

mance and behavior of microservices, detect errors, and ensure system reliability. Tools such as

the ELK Stack (Elasticsearch, Logstash, and Kibana) or Prometheus with Grafana can be used as

examples.

Building a microservices architecture using frameworks. Spring Framework (Fig. 1) is

one of the most popular tools for developing web applications in Java [3]. It consists of various

modules that handle different aspects of an application. One of its key principles is the inversion

of control, which simplifies the development process.

Figure 1 – Spring Framework

56 ISSN 1028-9763. Математичні машини і системи. 2023. № 3

In Spring Framework, developers declare beans which are Java classes that implement

specific logic, and the bean container manages their lifecycle. Beans are initialized at the start of

the program, and the framework automatically creates and satisfies the dependencies defined by

the developer. If certain beans cannot be initialized, such as due to circular dependencies, the

program will fail to start, and the developer will see an appropriate error message. When using

Spring Framework, developers are required to manually configure components required by the

modules, often through the use of XML files. For example, to use the Spring MVC module,

which is responsible for creating server-side rendering (SSR) web applications, the path to the

folder containing HTML pages needs to be specified. While Spring Framework already solves the

dependency injection (DI) problem, Spring Boot addresses the issue of autoconfiguration. Spring

Boot includes all the modules available in Spring but introduces the concept of «starters» that

contain necessary configurations, allowing developers to write code without creating unnecessary

XML files. Additionally, an embedded web server is automatically integrated into the application

when using a web starter. Thus, Spring Boot provides a convenient toolkit for developing web

applications of any type whether it is REST API or MVC. In particular, the Spring Data JPA

module allows for executing database queries by translating the Java method name into the corre-

sponding SQL query.

Spring Cloud is a set of tools and libraries that extends the functionality of the Spring

Framework for developing microservices architectures. It provides developers with convenient

means for deploying, managing, and interacting between microservices [3, 4]. The main compo-

nents of Spring Cloud include Eureka, Ribbon, Hystrix, Feign, Zuul, Config, and Sleuth.

Eureka is one of the components of Spring Cloud and serves as a service registry that al-

lows microservices to register and discover each other in a distributed system [5].

The key concepts associated with Eureka include:

• Eureka Server. This is a central component that acts as a service registry. Each micro-

service that wants to be registered connects to the Eureka Server. It stores information about reg-

istered microservices, including their identifiers, URLs, and metadata.

• Eureka Client. This component is used by microservices to register and interact with the

Eureka Server. Each microservice that wants to be discovered by other microservices needs to be

configured as a Eureka Client.

• Registered Instances. These are the microservices that have successfully registered with

the Eureka Server. Each instance of a microservice provides information about its availability,

status, and other metadata.

• Replication Servers. If there is a need to enhance the availability and reliability of the

Eureka Server, replication can be configured. It allows for having multiple Eureka Servers that

synchronize their state and information about registered microservices.

The advantages of using Eureka:

• Service Discovery. Eureka enables microservices to discover each other using the ser-

vice name, simplifying instance communication.

• Automatic Registration. Eureka Clients can automatically register their instance with the

Eureka Server, simplifying configuration and scalability support.

• Fault Detection. The Eureka Server can detect the absence of registered microservices

and inform other services about changes in service status.

• Load Balancing. With Eureka, load balancing can be utilized to distribute traffic among

different instances of a service.

Ribbon is a load-balancing library that allows for traffic distribution among instances of a

microservice to enhance availability and scalability. It is one of the libraries developed by Netflix

and used for load balancing across microservice instances. This helps to ensure high availability,

backup, and system scalability. With Ribbon, various load balancing algorithms such as Round

Robin, Random, Weighted distribution, and others can be configured. It integrates with other

ISSN 1028-9763. Математичні машини і системи. 2023. № 3 57

libraries like Spring Cloud and Netflix Eureka, making it easier to work with microservices in a

Java-based environment. Ribbon provides capabilities for dynamic instance discovery, health

monitoring, and automatic retry. This enables the system to operate efficiently even when the

number and state of microservice instances change. By intelligently distributing requests among

available instances, Ribbon helps to optimize resource utilization and provides fault tolerance in

distributed systems.

Hystrix is a library for handling failures and ensuring system resilience. It allows develop-

ers to add error handlers, rate limiting, and fallback mechanisms to ensure the reliability and sta-

bility of microservices. Hystrix provides several mechanisms to achieve this goal. One of them is

the circuit breaker mechanism which allows requests to be intercepted to a dependent service if it

becomes unavailable or returns a large number of errors. This helps to prevent system overload

and failures. Additionally, Hystrix allows the addition of error handlers (fallbacks) that are exe-

cuted in case of an error in the dependent service. This enables alternative logic or returning de-

fault data to avoid system failures. Hystrix also provides monitoring capabilities to track metrics

and performance statistics of requests such as response time, number of successful and unsuc-

cessful requests, and circuit status. This helps developers identify issues and analyze system per-

formance.

Feign is a declarative HTTP client that simplifies interaction with other microservices [6].

It allows developers to describe the interaction with other services using annotations and auto-

matically generates the necessary code. Developers can define interfaces with annotations speci-

fying the URL, HTTP methods, and request parameters. Feign automatically generates the re-

quired code for interacting with the specified services. With Feign, developers can avoid writing

repetitive code related to HTTP requests and response handling. Feign handles object serializa-

tion and deserialization, sets necessary request headers, and provides error handling capabilities.

It integrates with other libraries like Ribbon and Eureka for automatic load balancing and service

discovery.

Zuul is a router and load balancer that allows for managing incoming traffic to micro-

services [7]. It enables the configuration of routing rules, filters, and security policies. Zuul per-

forms routing functions, meaning it receives incoming traffic and forwards it to the appropriate

microservice. It can have routing rules that specify which request should be directed to which

service. This allows developers to flexibly distribute traffic among different microservices based

on URL patterns or other parameters. Zuul can also act as a load balancer, distributing traffic

among available instances of a single microservice. This helps to ensure high availability and

scalability of the system. Additionally, Zuul has filter functionality that allows developers to ap-

ply various operations to incoming traffic such as authentication checking, authorization, logging,

data transformation, etc. This enables the implementation of security policies and additional traf-

fic processing before it is passed on to microservices.

Config is a module for centralized management of microservices configuration. Config al-

lows for storing the configuration of microservices in a remote repository such as Git and auto-

matically loading it during the startup of the microservice. This allows for keeping the configura-

tion separate from the microservices themselves, providing centralized management and a con-

venient ability to change configuration without restarting the microservices. Config supports var-

ious configuration file formats such as properties, YAML, or JSON and can automatically track

changes in the configuration repository and provide updated values to microservices without their

restart. This enables dynamically configuring microservice parameters without the need for code

modification or restarts. Config also supports features like configuration versioning, access con-

trol to configuration files, encryption of sensitive data, and more, to ensure security and configu-

ration management.

Sleuth is a library developed by the Spring company for tracing and analyzing logs in a

distributed service architecture such as microservices. It provides the ability to generate and

58 ISSN 1028-9763. Математичні машини і системи. 2023. № 3

deploy unique request identifiers (trace IDs) that allow for tracking the path of a request as it

passes through different microservices in the system.

The main functions of Sleuth include:

• Unique request identifiers. Sleuth generates a unique identifier (trace ID) for each

request entering the system. This identifier is assigned to every log associated with that request,

regardless of which microservices it has traversed. This enables tracing the path of a request and

analyzing its journey through different components of the system.

• Span context. Sleuth adds a span context to each log, allowing for understanding the re-

lationship between logs related to a single request. Span context contains information about the

start and end of individual stages of request processing, which may occur in different micro-

services.

• Integration with other tools. Sleuth integrates with other analysis and monitoring tools

such as Zipkin or ELK (Elasticsearch, Logstash, and Kibana) for centralized log collection,

tracing, and analysis of distributed services.

With Sleuth, developers can trace request paths, analyze the execution time and through-

put of individual system components, detect issues and bottlenecks in the distributed architecture,

and improve monitoring and debugging processes in the system.

5. Conclusions

The article analyzes tools that assist developers in building stable, scalable, and easily managea-

ble microservices systems, providing functions such as registration, load balancing, fault toler-

ance, interaction, and centralized configuration management. Spring Cloud integrates well with

other Spring components and other technologies for developing distributed systems. The applica-

tion of microservices technologies can ensure modularity and facilitate the development, deploy-

ment, and subsequent technical support of e-commerce systems.

REFERENCES

1. Pattern: Monolithic Architecture. URL: https://microservices.io/patterns/monolithic.html.

2. Pattern: Saga. URL: https://microservices.io/patterns/data/saga.html.

3. Spring Framework. URL: https://spring.io/projects/spring-framework.

4. Spring Cloud. URL: https://spring.io/projects/spring-cloud.

5. Service Registration and Discovery. URL: https://spring.io/guides/gs/service-registration-and-

discovery/.

6. Spring Cloud OpenFeign. URL: https://spring.io/projects/spring-cloud-openfeign.

7. Spring REST with a Zuul Proxy. URL: https://www.baeldung.com/spring-rest-with-zuul-proxy.

Стаття надійшла до редакції 30.06.2023

https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/data/saga.html
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-cloud
https://spring.io/guides/gs/service-registration-and-discovery/
https://spring.io/guides/gs/service-registration-and-discovery/
https://spring.io/projects/spring-cloud-openfeign
https://www.baeldung.com/spring-rest-with-zuul-proxy

