
70 © Samoylenko H.T., Selivanova A.V., 2024
 ISSN 1028-9763. Математичні машини і системи. 2024. № 1

https://orcid.org/0000-0002-9374-2833

https://orcid.org/0000-0001-6559-1508

UDC 004.273

H.T. SAMOYLENKO*, A.V. SELIVANOVA*

MICROSERVICE ARCHITECTURE OF THE E-COMMERCE SYSTEM

*State University of Trade and Economics, Kyiv, Ukraine

Анотація. У статті розглянуто основні вимоги до мікросервісної архітектури в інформаційних

системах. Обґрунтовано доцільність використання мікросервісів для інформаційних систем елек-

тронної торгівлі. Концепція мікросервісної архітектури полягає в тому, що програмні додатки

розробляються як набір незалежних дрібних модульних сервісів і орієнтована на можливості та

пріоритети бізнесу. Охарактеризовано особливості взаємодії між сервісами та показники, що

впливають на вибір архітектурних рішень. Мікросервісна архітектура відзначається можливіс-

тю використовувати різні технології та платформи для окремих сервісів. Зокрема, це дозволяє

адаптувати технічні рішення під потреби кожного конкретного сервісу. Визначено функціональ-

ні, нефункціональні та бізнес-вимоги до системи електронної торгівлі, запропоновано архітекту-

ру для вебсервісу, що базується на клієнт-серверній та мікросервісній архітектурі, яка дозволяє

горизонтально та вертикально масштабувати серверну частину додатка. Мікросервісна архіте-

ктура передбачає створення окремих сервісів відповідно до окремих функцій підприємства, що

дозволить подальше масштабування та розширення, оскільки кожен мікросервіс може бути роз-

горнутий незалежно. Сформовано перелік бізнес-вимог для мікросервісів інформаційної системи

електронної торгівлі, визначено вимоги для їх подальшої реалізації. Запропоновано архітектуру

застосунку системи електронної торгівлі, що складатиметься з мікросервісів, які разом утворю-

ють комплексну систему електронної торгівлі, обґрунтовано інструменти для практичної реалі-

зації. Така архітектура відображає переваги мікросервісного підходу до розробки, оскільки дозво-

ляє ефективно відповідати на зміни в бізнес-потребах, надає можливість масштабування та

спрощує підтримку системи, що робить її більш гнучкою й підготовленою до викликів сучасного

бізнесу та технологій.

Ключові слова: системи електронної торгівлі, архітектура інформаційних систем, мікросервіси,

мікросервісна архітектура.

Abstract. The article explores the fundamental requirements for microservice architecture in information

systems and justifies its suitability for e-commerce information systems. The concept of microservice ar-

chitecture is based on developing software applications as a collection of independent modular services

aligned with business capabilities and priorities. The characteristics of service interaction and factors

influencing architectural decisions are discussed. Microservice architecture's flexibility to employ differ-

ent technologies and platforms for individual services is highlighted, allowing the adaptation of technical

solutions to the unique needs of each service. Functional, non-functional, and business requirements for e-

commerce systems are defined, and an architectural approach for web services is proposed. This ap-

proach is based on a client-server and microservice architecture, enabling both horizontal and vertical

scaling of the server-side components. The architecture involves creating separate services to correspond

to distinct business functions, facilitating further scalability and expansion since each microservice can be

deployed independently. A list of business requirements for microservices in an e-commerce information

system, along with the specifications for their implementation, has been formed. An app architecture for

the e-commerce system is presented, comprising a collection of microservices that collectively constitute a

comprehensive e-commerce system, and the tools for practical implementation are justified. This architec-

ture effectively embodies the advantages of the microservices development approach, allowing the system

to dynamically adapt to changing business needs. It provides scalability and simplifies system mainte-

nance, rendering it more agile and prepared to meet the challenges of modern business and technology.

Keywords: e-commerce systems, architecture of information systems, microservices, microservice archi-

tecture.

https://orcid.org/0000-0002-9374-2833
https://orcid.org/0000-0001-6559-1508

ISSN 1028-9763. Математичні машини і системи. 2024. № 1 71

DOI: 10.34121/1028-9763-2024-1-70-76

1. Introduction

Informatization is a significant factor in the impact of technology on e-commerce. The wide ap-

plication of information technologies in the company’s activities ensures the efficiency of its

work. Over the past several years, the architectural information system has undergone significant

changes, and new approaches and technologies have appeared. One of the choices that developers

must make is the choice of architecture, after which it has a decisive impact on the application’s

performance, scalability, and maintainability.

The aim of the article is to investigate the requirements for designing a microservice ar-

chitecture for an e-commerce information system and to explore the issues that arise during their

implementation.

2. Results of the research

Each type of software architecture has its own benefits and drawbacks. Monolithic applications

are easy to deploy because they typically need to be installed on a single server, but such applica-

tions have tight internal connections, resulting in limited scalability because they expand as a sin-

gle unit [1]. Microservice architecture is an innovative way of developing software systems, the

essence of which is that software applications are developed as a set of independent, small modu-

lar services [2]. Each service performs its own unique process and communicates with others us-

ing a well-defined and easy interaction mechanism. The way in which services interact with each

other is determined by the requirements of the application; there are various protocols and data

exchange formats for this purpose. HTTP/REST is a popular choice for many microservice archi-

tectures due to its simplicity and standardization. REST uses HTTP methods such as GET, POST,

PUT, and DELETE to perform operations on resources and uses URL paths to identify those re-

sources.

Software designed as microservices can naturally be divided into a series of service com-

ponents. Each of these services can be deployed, configured, and redistributed independently

without compromising the integrity of the overall program [2, 3]. Microservice architecture fo-

cuses on business capabilities and priorities, differing from the traditional monolithic develop-

ment approach. Microservices handle requests, process them, and formulate responses. They have

smart endpoints that process information, execute logic, and gateways through which information

is disseminated. This approach enables efficient resource utilization and ensures system flexibil-

ity and scalability. A distinctive feature of microservices architecture is the ability to use various

technologies and platforms for different services. Monitoring microservices plays a key role in

detecting and rectifying faults. Tracking metrics and the state of each service helps anticipate

failure risks and make rapid decisions to restore system functionality. When designing a micro-

service architecture, it’s crucial to coordinate the methods of interaction between services. There

are several key indicators that developers must consider when selecting architectural solutions:

• Interaction style: determines which mechanism of interprocessor communication (IPC)

is used between services (it can be HTTP/REST, gRPC, AMQP (Advanced Message Queuing

Protocol).

• Detection: determines how the service client learns its IP address or other details neces-

sary for interaction (through registration and detection services, DNS (Domain Name System) or

other mechanisms).

• Reliability: how reliable interaction between services is ensured, taking into account the

possible unavailability of some of them (mechanisms of re-requests, slow-to-fast retries, or the

use of targeted time-out schemes).

• Transactional messaging: how event publishing and messaging integrate with database

transactions that update business information.

72 ISSN 1028-9763. Математичні машини і системи. 2024. № 1

• External API: defines how application clients will interact with services (REST API,

GraphQL, or other interaction interfaces).

There are three main types of requirements that should be highlighted when developing a

software product:

1. Business requirements. These are high-level statements about the goals, objectives, and

needs of the system. They reflect the desired results and are aimed at achieving business goals.

2. Non-functional requirements describe the general characteristics of the system, such as

response time and reliability. They are often called quality attributes and arise from corporate

policies, user requirements, budget constraints, etc. These requirements are not directly related to

a specific system function.

3. Functional requirements describe the expected behavior of the system and the specific

functions that must be implemented by developers. They specify how the product should behave

in specific situations and are key to enabling users to complete their tasks.

Functional requirements must be clear and understandable to the development team and

all stakeholders. Non-functional requirements are defined by taking into account various factors

that are not related to specific system functions. They are important for optimizing the software

product. A business requirement (or business domain) represents a task that the organization

solves, contributing to the achievement of its strategic goals. For example, processing a basket of

orders in an online store is one of the business requirements that allows users to purchase goods

via the Internet. Every commercial organization has many such business requirements, which to-

gether form its overall business function. Microservice architecture realizes these business oppor-

tunities by fully automating their execution. The system is decomposed according to these busi-

ness requirements, and corresponding services are created to satisfy them. There are two main

patterns for decomposing an application into microservices: by business opportunities and by

problem areas.

Business capability-oriented decomposition: microservices are grouped based on the busi-

ness capabilities or functionality they provide. Each service is responsible for a specific business

function or opportunity and reflects the company’s business structure.

Decomposition by problem areas (domain-driven design): microservices are grouped

based on the problem areas they serve. Each service specializes in a specific part of the system or

a subject area and helps distinguish different concepts and entities in the system.

When decomposing the system, the principle of single responsibility is applied. The sys-

tem is broken down based on business requirements, and separate services are created to meet

these requirements. An approach to software design based on domain modeling is known as sub-

ject-oriented design. Within the subject-oriented design, there is a concept of «bounded context»,

which defines a part of the subject area where terms and concepts have a specific meaning. An

enterprise may have multiple bounded contexts, each of which may include multiple business op-

portunities [4].

3. Materials and methods

After analyzing the subject area of e-commerce systems, a set of functional requirements for the

e-commerce system was formulated:

– the system should provide the ability to register a new user and authorize an existing

user;

– the system should provide the possibility of client authorization through social networks

and accounts;

– the system must provide access keys to the HTTP API to users;

– the system should provide the ability to view product lists with the option of sorting and

review evaluation criteria and the latest actions of customers;

ISSN 1028-9763. Математичні машини і системи. 2024. № 1 73

– the system should allow users to add new products via HTTP API, create new actions

and associate them with products, and register new customers through a redirect request to social

networks or accounts.

Non-functional requirements include performance, security, and implementation

requirements.

Performance requirements:

• vertical and horizontal scalability: the system must be able to scale vertically (adding

resources to existing servers) and horizontally (adding new servers to the system) to ensure stable

operation even with increasing load;

• processing a conditional number of requests at the same time: the system must be able to

process a large number of requests from users at the same time without losing performance and

speed of response.

Security requirements:

• security of user passwords: user passwords must be protected from reading and must not

be stored in an open form;

• protection against browser and server attacks: the system must have mechanisms to

protect users from browser attacks such as CSRF (Cross-Site Request Forgery) and XSS (Cross-

Site Scripting), as well as from server attacks such as DDoS (Distributed Denial of Service);

• input validation and filtering: the system must validate and filter all input data coming

from users to prevent SQL injections and other types of attacks.

Implementation requirements:

• minimization of the client application code: the client application should have a minimal

amount of code, which reduces its loading and facilitates a quick response to requests;

• support for common browsers and their current versions: the system must be optimized

to support common browsers (e.g., Google Chrome, Mozilla Firefox, Safari) to ensure

compatibility and ease of use for users.

In microservice architecture, each service is responsible for performing a specific function

or service within the system. This approach allows considering business requirements for each

service separately. The following list of business requirements for e-commerce system

microservices is proposed:

1. Registration and authorization:

• registration: allows users to create accounts by entering personal details and contact

information;

• authorization: checks and confirms the user’s identification to grant access to the

personal account;

• social media authentication: allows users to use their social media accounts to log in to

the site.

2. Product catalog service:

• storage and presentation of information: stores data about goods, such as name,

description, price, image, rating, and other characteristics; provides an interface for viewing

goods by buyers;

• accounting of goods: keeping records of the number of goods in the warehouse;

• availability: checks the availability of goods for sale and restocking if necessary.

3. Order management service:

• placing orders: enables customers to place orders by selecting products and specifying a

delivery address;

• status of orders: provides the ability to track the status of orders, from receipt to

shipment;

• payment: processing payments for orders through various payment methods such as

bank cards, electronic money, etc.

74 ISSN 1028-9763. Математичні машини і системи. 2024. № 1

4. Delivery management service:

• delivery status: provides the ability to track the movement of goods during delivery,

including the date of departure and arrival;

• delivery options: shows different delivery options to users with corresponding prices and

terms.

5. HTTP API for users:

• requests API: provides access to various user requests, including order details, purchase

history, etc.

6. Expansion and scaling service:

• scaling of services: automatically scales individual microservices in case of overload,

ensuring stable operation of the system even under high load.

Together, these services form a comprehensive e-commerce system that enables visitors

and users to make purchases online.

4. Designing

The interaction of the browser web client and user applications in the e-commerce system is

based on the client-server architecture. Client computers provide an interface that allows users of

these devices to request services from the server and display the results that the server sends.

Ideally, the server provides a standardized and transparent interface to clients that helps

encapsulate clients from system details such as hardware and software that provide these services

[5]. For example, in this case, the HTTP API is used as an interface for interaction between

clients and the server, which makes clients less dependent on specific details of the server system

implementation (Fig. 1). Each of the microservices can be tailored to specific enterprise

functions, allowing for further scaling and extensibility as each microservice can be deployed

independently.

Figure 1 – Proposed architecture of the e-commerce system

The proposed architecture of the e-commerce system consists of the following levels:

clients, load balancer, gateway service, services, and databases. Clients that interact with the

system can be of different types, including client applications that access recommendations, as

well as user web applications [5]. The load balancer is located between the gateway service and

the clients, and its main function is to distribute the load between different parts of the system.

The gateway service is where the business logic resides and acts as an intermediary between

clients and various services, for example, those responsible for authorization processes. Services

are responsible for various functional services and provide them for clients. Each service has its

own database; this architecture ensures transactional requests, which means that each request or

sequence of requests is perceived by the database as a single and indivisible block of operations.

ISSN 1028-9763. Математичні машини і системи. 2024. № 1 75

For further practical implementation, it is proposed to develop an e-commerce system

application consisting of 6 microservices: product catalog service, order management service,

delivery management service, API gateway service, the expansion and scaling service, as well as

the registrar service (discovery service) (Fig. 2). It is advisable to develop the client part as a

separate program on a single-page application of the Vue.js framework.

Figure 2 – Proposed application architecture

The presence of Service Discovery allows you to use a declarative REST client, which

allows you to wrap HTTP communication between microservices in a Java interface, which

makes the code much easier to read [6, 7]. Service Discovery and Feign are often used with the

client load balancer – Ribbon. For example, if a conditional microservice has many replicas, then

the traffic must be evenly distributed among these replicas. So the service that calls the other one

must import spring-cloud-starter-ribbon and specify the load balancing strategy via a short

configuration. The registrar service can be implemented using the Service Discovery pattern,

which provides an opportunity to use the Feign declarative REST client within the system [7].

This service monitors the status of other services and provides developers with a convenient tool

in the form of a dashboard to detect possible system malfunctions. In the future, it will also be

possible to implement a client-side Ribbon load balancer. It is advisable to create the API

Gateway service in order to provide the system with a single point of entry, thereby reducing

possible points for potential attacks. In addition, this service includes user authentication and

authorization processes. This architecture reflects the advantages of a microservices approach to

application development and implements such common patterns as Service Discovery and API

Gateway [5]. Interaction between services will be based on synchronous HTTP requests and

asynchronous messaging through the RabbitMQ broker. Zuul provides an opportunity to

implement the API gateway pattern, which is a single point of entry into the application [8]. This

library provides an interface for configuring appropriate routings to other microservices by

service name in the Spring Cloud system or by URL. Zuul also provides the ability to apply

filters to a request: before sending it to the microservice, after returning a response from the

microservice, and when an error occurs in requests [9].

5. Conclusions

In recent years, the architecture of information systems has undergone significant changes, and

new approaches and technologies have appeared. Microservice architecture breaks down complex

monolithic applications into a set of autonomous services that can be developed and scaled

independently of each other. This gives more flexibility and scalability to the system. The work

defines both functional and non-functional requirements for the e-commerce system. It is also

proposed to use a microservice architecture for the e-commerce system, which allows horizontal

76 ISSN 1028-9763. Математичні машини і системи. 2024. № 1

and vertical scaling of the server part. An overview of possible technical implementations based

on the proposed architectural solution has been carried out.

REFERENCES

1. ISO/IEC 15288. Systems and software engineering – System life cycle processes. [Valid from 2008-03-

18]. 70 p. (International standard).

2. Configure ESLint. URL: https://eslint.org/docs/user-guide/configuring.

3. Pattern: Monolithic Architecture. URL: https://microservices.io/patterns/monolithic.html.

4. Paulk М.C., Weber C.V., Curtis B., Chrissis M.B. et al. The Capability Maturity Model: Guidelines for

Improving the Software Process. Boston: AddisonWesley, 2015. 456 р.

5. Amazon API Gateway. URL: https://aws.amazon.com/api-gateway.

6. Spring Cloud. URL: https://spring.io/projects/spring-cloud.

7. Service Registration and Discovery. URL: https://spring.io/guides/gs/service-registration-and-

discovery.

8. Spring REST with a Zuul Proxy. URL: https://www.baeldung.com/spring-rest-with-zuul-proxy.

9. Design Patterns Typescript. URL: https://refactoring.guru/design-patterns/typescript.

Стаття надійшла до редакції 15.10.2023

https://eslint.org/docs/user-guide/configuring
https://microservices.io/patterns/monolithic.html
https://aws.amazon.com/api-gateway
https://spring.io/projects/spring-cloud
https://spring.io/guides/gs/service-registration-and-discovery
https://spring.io/guides/gs/service-registration-and-discovery
https://www.baeldung.com/spring-rest-with-zuul-proxy
https://refactoring.guru/design-patterns/typescript

