https://orcid.org/0000-0002-9374-2833
https://orcid.org/0000-0001-6559-1508

UDC 004.273
H.T. SAMOYLENKO®, A.V. SELIVANOVA"
MICROSERVICE ARCHITECTURE OF THE E-COMMERCE SYSTEM

“State University of Trade and Economics, Kyiv, Ukraine

Anomauia. Y cmammi po3eisiHymo OCHOBHI 8UMO2U 00 MIKpOCep8iCHOI apximekmypu 8 iHghopmayitiHux
cucmemax. OOTPYHMOBAHO OOYLNbHICIMb BUKOPUCMAHHA MIKPOCEPBICI8 OJisl IHQOPMAYIIHUX cuceM eleK-
mpornoi mopeieni. Konyenyiss MiKpocepgsicHOI apXimexmypu noasede 8 momy, wo NpoSpamui 000amxu
PO3pOONAIOMBCSL SIK HADIP HE3aNeHCHUX OPIOHUX MOOYIbHUX CepPBICi6 | OPIEHMOBAHA HA MONCIUBOCMI Ma
npiopumemu 6izHecy. Oxapakmepuzo8arHo 0COOIUBOCHI 83AEMOOII MidC cepsicamu ma NOKA3HUKY, WO
BNIUBAIOMb HA SUOIp apximekmypHux piuensb. Mikpocepgicha apximekmypa 6i03HAUAEMbC MONCAUBIC-
MI0 BUKOPUCMOBYBAMU PI3HI MexHOo02T ma naamgopmu 018 oKkpemux cepgicig. 3okpema, ye 003801s€
aoanmysamu mexHiyHi pilueHHs nio Nompedu KO#CHO20 KOHKPemHo20 cepsicy. Busnayeno ¢yHkyionan-
Hi, HeQ)YHKYIOHAbHI ma Oi3Hec-8UMO2U 00 CUCTeMU eleKMPOHHOT MOpP2ini, 3anPONOHOBAHO apXimeKmy-
Py 01 gebeepsicy, wo 6azyemvpcsi Ha KIIEHM-CEPEEPHIll Ma MIKPOCEPGICHI apXimeKmypi, aKa 00360Ji€
2OPU3OHMATLHO MA 8EPMUKAILHO MACUmMadysamu cepgepHy uacmuny dodamka. Mikpocepsicua apxime-
Kmypa nepeobavae cmeopeHHs OKpeMux cepsicié 8i0n08iOHO 00 OKpemux (YHKYil niOnpuemcmed, ujo
003601UMb NOOATbUE MACUMADYBAHHS MA PO3UWUPEHHS, OCKIILKU KOJCEH MIKpOcepaic Modice OYmu po3-
eopnymuil Hesanexcrno. Cpopmosano nepenix 6izHec-6umoe 01 MIKpocepeicie iHpopmayiinoi cucmemu
eIeKMPOHHOI MOP2i6i, BU3HAYEHO 8uUMo2u OJi iX nodanvwiol peanizayii. 3anponoHo8aro apximexmypy
3ACMOCYHKY CUCEMU eNeKMPOHHOT MOP2i6i, Wo CKIA0amumMemvpcs 3 MIKpOCepsicia, sKi pazom ymeopio-
10Mb KOMNJEKCHY CUCEMY eleKMPOHHOI Mopeieni, 00IPYHMOBAHO THCmpyMenmu OJisl RPAKMUYHOI peaJi-
sayii. Taka apximexmypa 8i0obpaxicae nepegazu MiKpocepgicHo20 nioxo0y 00 po3poOKU, OCKLIbKU 00360~
JA€ epekmusHo gionogioamu Ha 3MiHU 6 Oi3Hec-nompebax, HA0AE MOJICIUBICMb MACUMADY8AHHA Md
CHpowye NIOMpPUMKY cucmemu, wo pooums ii OLib cHYUKOIO Ul NIO2OMOBNIEHOI 00 GUKIUKIE CYUACHO20
Oi3Hecy ma mexHono2ill.

Knrouoei cnosa: cucmemu enekmpouHoi mopeieni, apximexmypa ingpopmayitinux cucmem, Mikpocepgicu,
MiIKpocepgicHa apximekmypd.

Abstract. The article explores the fundamental requirements for microservice architecture in information
systems and justifies its suitability for e-commerce information systems. The concept of microservice ar-
chitecture is based on developing software applications as a collection of independent modular services
aligned with business capabilities and priorities. The characteristics of service interaction and factors
influencing architectural decisions are discussed. Microservice architecture's flexibility to employ differ-
ent technologies and platforms for individual services is highlighted, allowing the adaptation of technical
solutions to the unique needs of each service. Functional, non-functional, and business requirements for e-
commerce systems are defined, and an architectural approach for web services is proposed. This ap-
proach is based on a client-server and microservice architecture, enabling both horizontal and vertical
scaling of the server-side components. The architecture involves creating separate services to correspond
to distinct business functions, facilitating further scalability and expansion since each microservice can be
deployed independently. A list of business requirements for microservices in an e-commerce information
system, along with the specifications for their implementation, has been formed. An app architecture for
the e-commerce system is presented, comprising a collection of microservices that collectively constitute a
comprehensive e-commerce system, and the tools for practical implementation are justified. This architec-
ture effectively embodies the advantages of the microservices development approach, allowing the system
to dynamically adapt to changing business needs. It provides scalability and simplifies system mainte-
nance, rendering it more agile and prepared to meet the challenges of modern business and technology.
Keywords: e-commerce systems, architecture of information systems, microservices, microservice archi-
tecture.

70 © Samoylenko H.T., Selivanova A.V., 2024
ISSN 1028-9763. Maremarnuni Mmamuau i cucreMu. 2024, Ne 1

https://orcid.org/0000-0002-9374-2833
https://orcid.org/0000-0001-6559-1508

DOI: 10.34121/1028-9763-2024-1-70-76
1. Introduction

Informatization is a significant factor in the impact of technology on e-commerce. The wide ap-
plication of information technologies in the company’s activities ensures the efficiency of its
work. Over the past several years, the architectural information system has undergone significant
changes, and new approaches and technologies have appeared. One of the choices that developers
must make is the choice of architecture, after which it has a decisive impact on the application’s
performance, scalability, and maintainability.

The aim of the article is to investigate the requirements for designing a microservice ar-
chitecture for an e-commerce information system and to explore the issues that arise during their
implementation.

2. Results of the research

Each type of software architecture has its own benefits and drawbacks. Monolithic applications
are easy to deploy because they typically need to be installed on a single server, but such applica-
tions have tight internal connections, resulting in limited scalability because they expand as a sin-
gle unit [1]. Microservice architecture is an innovative way of developing software systems, the
essence of which is that software applications are developed as a set of independent, small modu-
lar services [2]. Each service performs its own unique process and communicates with others us-
ing a well-defined and easy interaction mechanism. The way in which services interact with each
other is determined by the requirements of the application; there are various protocols and data
exchange formats for this purpose. HTTP/REST is a popular choice for many microservice archi-
tectures due to its simplicity and standardization. REST uses HTTP methods such as GET, POST,
PUT, and DELETE to perform operations on resources and uses URL paths to identify those re-
sources.

Software designed as microservices can naturally be divided into a series of service com-
ponents. Each of these services can be deployed, configured, and redistributed independently
without compromising the integrity of the overall program [2, 3]. Microservice architecture fo-
cuses on business capabilities and priorities, differing from the traditional monolithic develop-
ment approach. Microservices handle requests, process them, and formulate responses. They have
smart endpoints that process information, execute logic, and gateways through which information
is disseminated. This approach enables efficient resource utilization and ensures system flexibil-
ity and scalability. A distinctive feature of microservices architecture is the ability to use various
technologies and platforms for different services. Monitoring microservices plays a key role in
detecting and rectifying faults. Tracking metrics and the state of each service helps anticipate
failure risks and make rapid decisions to restore system functionality. When designing a micro-
service architecture, it’s crucial to coordinate the methods of interaction between services. There
are several key indicators that developers must consider when selecting architectural solutions:

« Interaction style: determines which mechanism of interprocessor communication (IPC)
is used between services (it can be HTTP/REST, gRPC, AMQP (Advanced Message Queuing
Protocol).

* Detection: determines how the service client learns its IP address or other details neces-
sary for interaction (through registration and detection services, DNS (Domain Name System) or
other mechanisms).

« Reliability: how reliable interaction between services is ensured, taking into account the
possible unavailability of some of them (mechanisms of re-requests, slow-to-fast retries, or the
use of targeted time-out schemes).

« Transactional messaging: how event publishing and messaging integrate with database
transactions that update business information.

ISSN 1028-9763. Maremaruuni Mamuay i cuctemu. 2024, No 1 71

» External API. defines how application clients will interact with services (REST API,
GraphQL, or other interaction interfaces).

There are three main types of requirements that should be highlighted when developing a
software product:

1. Business requirements. These are high-level statements about the goals, objectives, and
needs of the system. They reflect the desired results and are aimed at achieving business goals.

2. Non-functional requirements describe the general characteristics of the system, such as
response time and reliability. They are often called quality attributes and arise from corporate
policies, user requirements, budget constraints, etc. These requirements are not directly related to
a specific system function.

3. Functional requirements describe the expected behavior of the system and the specific
functions that must be implemented by developers. They specify how the product should behave
in specific situations and are key to enabling users to complete their tasks.

Functional requirements must be clear and understandable to the development team and
all stakeholders. Non-functional requirements are defined by taking into account various factors
that are not related to specific system functions. They are important for optimizing the software
product. A business requirement (or business domain) represents a task that the organization
solves, contributing to the achievement of its strategic goals. For example, processing a basket of
orders in an online store is one of the business requirements that allows users to purchase goods
via the Internet. Every commercial organization has many such business requirements, which to-
gether form its overall business function. Microservice architecture realizes these business oppor-
tunities by fully automating their execution. The system is decomposed according to these busi-
ness requirements, and corresponding services are created to satisfy them. There are two main
patterns for decomposing an application into microservices: by business opportunities and by
problem areas.

Business capability-oriented decomposition: microservices are grouped based on the busi-
ness capabilities or functionality they provide. Each service is responsible for a specific business
function or opportunity and reflects the company’s business structure.

Decomposition by problem areas (domain-driven design): microservices are grouped
based on the problem areas they serve. Each service specializes in a specific part of the system or
a subject area and helps distinguish different concepts and entities in the system.

When decomposing the system, the principle of single responsibility is applied. The sys-
tem is broken down based on business requirements, and separate services are created to meet
these requirements. An approach to software design based on domain modeling is known as sub-
ject-oriented design. Within the subject-oriented design, there is a concept of «bounded contexty,
which defines a part of the subject area where terms and concepts have a specific meaning. An
enterprise may have multiple bounded contexts, each of which may include multiple business op-
portunities [4].

3. Materials and methods

After analyzing the subject area of e-commerce systems, a set of functional requirements for the
e-commerce system was formulated:

— the system should provide the ability to register a new user and authorize an existing
user;

— the system should provide the possibility of client authorization through social networks
and accounts;

— the system must provide access keys to the HTTP API to users;

— the system should provide the ability to view product lists with the option of sorting and
review evaluation criteria and the latest actions of customers;

72 ISSN 1028-9763. Marematuyni Maruny i cucremu. 2024, Ne 1

— the system should allow users to add new products via HTTP API, create new actions
and associate them with products, and register new customers through a redirect request to social
networks or accounts.

Non-functional requirements include performance, security, and implementation
requirements.

Performance requirements:

» vertical and horizontal scalability: the system must be able to scale vertically (adding
resources to existing servers) and horizontally (adding new servers to the system) to ensure stable
operation even with increasing load;

* processing a conditional number of requests at the same time: the system must be able to
process a large number of requests from users at the same time without losing performance and
speed of response.

Security requirements:

* security of user passwords: user passwords must be protected from reading and must not
be stored in an open form;

* protection against browser and server attacks: the system must have mechanisms to
protect users from browser attacks such as CSRF (Cross-Site Request Forgery) and XSS (Cross-
Site Scripting), as well as from server attacks such as DDoS (Distributed Denial of Service);

« input validation and filtering: the system must validate and filter all input data coming
from users to prevent SQL injections and other types of attacks.

Implementation requirements:

» minimization of the client application code: the client application should have a minimal
amount of code, which reduces its loading and facilitates a quick response to requests;

* support for common browsers and their current versions: the system must be optimized
to support common browsers (e.g., Google Chrome, Mozilla Firefox, Safari) to ensure
compatibility and ease of use for users.

In microservice architecture, each service is responsible for performing a specific function
or service within the system. This approach allows considering business requirements for each
service separately. The following list of business requirements for e-commerce system
microservices is proposed:

1. Registration and authorization:

« registration: allows users to create accounts by entering personal details and contact
information;

+ authorization: checks and confirms the user’s identification to grant access to the
personal account;

* social media authentication: allows users to use their social media accounts to log in to
the site.

2. Product catalog service:

» storage and presentation of information: stores data about goods, such as name,
description, price, image, rating, and other characteristics; provides an interface for viewing
goods by buyers;

* accounting of goods: keeping records of the number of goods in the warehouse;

« availability: checks the availability of goods for sale and restocking if necessary.

3. Order management service:

* placing orders: enables customers to place orders by selecting products and specifying a
delivery address;

« status of orders: provides the ability to track the status of orders, from receipt to
shipment;

» payment: processing payments for orders through various payment methods such as
bank cards, electronic money, etc.

ISSN 1028-9763. MaremaTnyni Mamunu i cucteMu. 2024, Ne 1 73

4. Delivery management service:

* delivery status: provides the ability to track the movement of goods during delivery,
including the date of departure and arrival;

* delivery options: shows different delivery options to users with corresponding prices and
terms.
5. HTTP API for users:

* requests API: provides access to various user requests, including order details, purchase
history, etc.
6. Expansion and scaling service:

* scaling of services: automatically scales individual microservices in case of overload,
ensuring stable operation of the system even under high load.

Together, these services form a comprehensive e-commerce system that enables visitors
and users to make purchases online.

4. Designing

The interaction of the browser web client and user applications in the e-commerce system is
based on the client-server architecture. Client computers provide an interface that allows users of
these devices to request services from the server and display the results that the server sends.
Ideally, the server provides a standardized and transparent interface to clients that helps
encapsulate clients from system details such as hardware and software that provide these services
[5]. For example, in this case, the HTTP API is used as an interface for interaction between
clients and the server, which makes clients less dependent on specific details of the server system
implementation (Fig. 1). Each of the microservices can be tailored to specific enterprise
functions, allowing for further scaling and extensibility as each microservice can be deployed
independently.

Service 1 < »(Database 1
Browser client
app \
Load balancer |« » Gateway service |« » Service 2 < »(Database 2
Client app /
Service n < »(Databasen

Figure 1 — Proposed architecture of the e-commerce system

The proposed architecture of the e-commerce system consists of the following levels:
clients, load balancer, gateway service, services, and databases. Clients that interact with the
system can be of different types, including client applications that access recommendations, as
well as user web applications [5]. The load balancer is located between the gateway service and
the clients, and its main function is to distribute the load between different parts of the system.
The gateway service is where the business logic resides and acts as an intermediary between
clients and various services, for example, those responsible for authorization processes. Services
are responsible for various functional services and provide them for clients. Each service has its
own database; this architecture ensures transactional requests, which means that each request or
sequence of requests is perceived by the database as a single and indivisible block of operations.

74 ISSN 1028-9763. Maremaruuni Maiusy i cucremu. 2024. Ne 1

For further practical implementation, it is proposed to develop an e-commerce system
application consisting of 6 microservices: product catalog service, order management service,
delivery management service, APl gateway service, the expansion and scaling service, as well as
the registrar service (discovery service) (Fig. 2). It is advisable to develop the client part as a
separate program on a single-page application of the Vue.js framework.

Discovery service Product catalog
service

A

Browser client Order management

app \ h 4 service

APl gateway Delivery
——y management

Client app service
Expansion and
scaling

service

Figure 2 — Proposed application architecture

The presence of Service Discovery allows you to use a declarative REST client, which
allows you to wrap HTTP communication between microservices in a Java interface, which
makes the code much easier to read [6, 7]. Service Discovery and Feign are often used with the
client load balancer — Ribbon. For example, if a conditional microservice has many replicas, then
the traffic must be evenly distributed among these replicas. So the service that calls the other one
must import spring-cloud-starter-ribbon and specify the load balancing strategy via a short
configuration. The registrar service can be implemented using the Service Discovery pattern,
which provides an opportunity to use the Feign declarative REST client within the system [7].
This service monitors the status of other services and provides developers with a convenient tool
in the form of a dashboard to detect possible system malfunctions. In the future, it will also be
possible to implement a client-side Ribbon load balancer. It is advisable to create the API
Gateway service in order to provide the system with a single point of entry, thereby reducing
possible points for potential attacks. In addition, this service includes user authentication and
authorization processes. This architecture reflects the advantages of a microservices approach to
application development and implements such common patterns as Service Discovery and API
Gateway [5]. Interaction between services will be based on synchronous HTTP requests and
asynchronous messaging through the RabbitMQ broker. Zuul provides an opportunity to
implement the API gateway pattern, which is a single point of entry into the application [8]. This
library provides an interface for configuring appropriate routings to other microservices by
service name in the Spring Cloud system or by URL. Zuul also provides the ability to apply
filters to a request: before sending it to the microservice, after returning a response from the
microservice, and when an error occurs in requests [9].

5. Conclusions

In recent years, the architecture of information systems has undergone significant changes, and
new approaches and technologies have appeared. Microservice architecture breaks down complex
monolithic applications into a set of autonomous services that can be developed and scaled
independently of each other. This gives more flexibility and scalability to the system. The work
defines both functional and non-functional requirements for the e-commerce system. It is also
proposed to use a microservice architecture for the e-commerce system, which allows horizontal

ISSN 1028-9763. Maremaruuni Mamuay i cuctemu. 2024, No 1 75

and vertical scaling of the server part. An overview of possible technical implementations based
on the proposed architectural solution has been carried out.

REFERENCES

1. ISO/IEC 15288. Systems and software engineering — System life cycle processes. [Valid from 2008-03-
18]. 70 p. (International standard).

2. Configure ESLint. URL.: https://eslint.org/docs/user-guide/configuring.

3. Pattern: Monolithic Architecture. URL: https://microservices.io/patterns/monolithic.html.

4. Paulk M.C., Weber C.V., Curtis B., Chrissis M.B. et al. The Capability Maturity Model: Guidelines for
Improving the Software Process. Boston: AddisonWesley, 2015. 456 p.

5. Amazon API Gateway. URL: https://aws.amazon.com/api-gateway.

6. Spring Cloud. URL.: https://spring.io/projects/spring-cloud.

7. Service Registration and Discovery. URL: https://spring.io/guides/gs/service-registration-and-
discovery.

8. Spring REST with a Zuul Proxy. URL.: https://www.baeldung.com/spring-rest-with-zuul-proxy.

9. Design Patterns Typescript. URL: https://refactoring.guru/design-patterns/typescript.

Cmamms naodivuina 0o pedaxyii 15.10.2023

76 ISSN 1028-9763. Marematuyni Maruny i cucremu. 2024, Ne 1

https://eslint.org/docs/user-guide/configuring
https://microservices.io/patterns/monolithic.html
https://aws.amazon.com/api-gateway
https://spring.io/projects/spring-cloud
https://spring.io/guides/gs/service-registration-and-discovery
https://spring.io/guides/gs/service-registration-and-discovery
https://www.baeldung.com/spring-rest-with-zuul-proxy
https://refactoring.guru/design-patterns/typescript

