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Anomauia. Axkmyanvricms memu cmammi USHAYAEMbCA 8Ce DLIbULOI NOUWUPEHICTNIO De3NINOMHUX Tima-
avHux anapamie (PIIJIA) ne minvku 6 yueinbHil, a U y GIUCLKOGIN chepi, Oe BOHU CMBOPIOIOMb 3HAYHI
npoonemu nPomMunogimpsHoi 06oponu. Y pobomi npedcmagnieno nPpaKmuyry nepesipky MOXCIUBOCHI Ma
epexmusnocmi guxopucmanusi mooeni YOLOVS 0ns eusasieHHs K8AOpOKONmMepie ma OKMOKONmepia y
8I0€0NOMOKAX, SIKA NPUSHAYEHA 0151 BUABLEHHS 00 €EKMI8 Yy peanrbHOMY 4aci ma ceemenmayii 300pasX;cenHs.
Bukopucmosyemuvcs memoo naguanus, saxuti aoanmye mooenv YOLOVS winsxom 3acmocy8ants nioxooy
«transfer learningy 011 Kopucy8anHs nonepeorbo HagyeHux eazosux koediyicumie YOLOVS 0o danux, wjo
cmocyiombesi Oporis. Taxooe 00CaioAHCyeEMbCst 30amHICIb MOOET eheKmUsHO NPayoeamu 6 PisHux ymo-
6ax 306HIUIHbLO2O cepedosuwya. 1Iposedeni exchepumenmu 0eMOHCMPYIOMb epeKMUGHICMb po3poOIeHO20
Memooy 01 moyHoi idenmucpixayii BIIJIA 6 piznux cumyayisax, wo pobums 1020 8adCAUBUM OISt BOOCKO-
HaleHHs 3ac00i6 NOGIMPSAHO20 CHOCMEPENCEHHS MA MeXaHizmie be3neKku. JoCniOHCeHHs MAaKodiC aHauizye
aoanmueHicme Mooeni 00 MIHAUBUX VMO8 CHOCMEPEdCeHHs, 3abesneuyovuu il Hadiunicms npu 0opodyi
300padicens i sideo. Pesynomamu exazyroms Ha eucokuti nomenyian mooeni YOLOVS y niosuwenni mooic-
ausocmeti cucmem nPOMuUnOGIMpsiHOi 060poHU ma 3miyHeHHi 3axo0ie be3nexu npomu 3a2po3 BILIIA. Kpiu
moeo, y cmammi 062080pI0EMbCSL OOUUCTIOBANLHA eeKMUBHICMb MOOeNi, NIOKPeCII0EMbCA ii 30amHicCmb
06pobasimu 8i0€0NOMOKU 6 PeaNbHOMY Yaci 3 MIHIMATbHUMU 00YUCTI08ANbHUMU pecypcamu. Oyineno no-
KasHuku precision ma recall modeni, o demorncmpye ii 30amuicme mouro eusenamu bBIIIA 3 minimizayi-
€10 NOMUTIKOBUX CHPAYbOBYBANb. 3a2anom pe3yIbmamu niOKpecaioms 8axCIugicms GUKOPUCINAHHSL nepe-
008UX MemMoOi8 MAUWUHHO20 HABUAHHA OJiA eghekmueno2o eusaenenns BIIJIA.

Knwuogi cnosa: oesninomui nimanvui anapamu, YOLOVS, keadpoxonmepu, okmoxonmepu, npomunosim-
pAHa 000poHa, 0OpobKa 8i0eONOMOKY, BUAGIEHHS 00 €KMIB, CNOCMEPENCEHHs 8 PedlbHOMY Ydaci, transfer
learning, obuucnioeanvia eghekmusHicms, MOUHICMb i 3aNam "AMOBYEAHHS, GUABNEHHS OPOHIE.

Abstract. The relevance of the topic of the article is determined by the growing prevalence of unmanned
aerial vehicles (UAVs) not only in the civilian but also in the military field, where they create significant
problems for air defense. The paper presents a practical test of the possibility and effectiveness of using
the YOLOvVS model for detecting quadcopters and octocopters in video streams, which is designed for
real-time object detection and image segmentation. A training method is used that adapts the YOLOvVS
model by applying a «transfer learning» approach to adjust pre-trained YOLOvVS weights to drone-specific
data. The ability of the model to work effectively in various environmental conditions is investigated, too.
The conducted experiments demonstrate the efficiency of the developed method to accurately identify
UAVs in various situations, which makes it important for improving aerial surveillance tools and security
mechanisms. The study also explores the model’s adaptability to changing observation conditions, ensur-
ing its robustness in processing images and video. The results indicate the high potential of the YOLOVS
model in enhancing the capabilities of air defense systems and bolstering security measures against UAV
threats. Additionally, the article discusses the computational efficiency of the model, highlighting its abil-
ity to process video streams in real time with minimal computational resources. The precision and recall
metrics of the model are evaluated, demonstrating its ability to accurately detect UAVs while minimizing
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false positives. Overall, the findings underscore the importance of leveraging advanced machine-learning
techniques for effective UAV detection.

Keywords: unmanned aerial vehicles, YOLOVS, quadcopters, octocopters, air defense, video stream pro-
cessing, object detection, real-time surveillance, transfer learning, computational efficiency, precision and
recall, drone detection.
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1. Introduction

In the modern era, the sky has become a bustling highway for an ever-increasing fleet of un-
manned aerial vehicles (UAVs), popularly known as drones. Their ascent has been meteoric, find-
ing roles in a broad array of activities from capturing breathtaking aerial photography to being the
main actor in modern war conflicts (the Russo-Ukrainian war).

The rapid growth and development of drone technology have raised the issue of counter-
ing drones [1, 2]. For example, in our current realities, enemy military drones are constantly con-
ducting aerial reconnaissance of our positions, making kamikaze raids on personnel and equip-
ment, and no less importantly, adjusting artillery fire. All of these emphasize the need for reliable
detection systems for small and medium-sized aircraft [3—6]. The detection challenge is height-
ened by the diversity of different types of drones, such as quadcopters and octocopters, each with
unique flight patterns and risk profiles.

Into this breach steps YOLOvVS [7], the latest iteration in the acclaimed «You Only Look
Once» series, lauded for its lightning-fast object detection capabilities. This paper delves into the
utilization of YOLOVS as a sentinel in the sky, tasked with the identification and tracking of these
UAVs in real-time video feeds. We chart the model’s learning trajectory, elucidated by the train-
ing graphs, and scrutinize its field performance through a series of test set examples.

The aim of the article is to merge cutting-edge machine-learning techniques with the
pressing need for aerial oversight. We explore the potential of YOLOVS to not just see but to un-
derstand the skies.

2. Problem statement

The proliferation of drones presents a multifaceted challenge in modern aerial defense, particular-
ly in conflict zones where they play pivotal roles in reconnaissance, offensive operations, and
artillery coordination. Conventional detection systems often struggle to identify and track these
agile machines, particularly smaller models like quadcopters and octocopters that can maneuver
with a low radar cross-section. YOLOVS offers a potential solution with its advanced object de-
tection algorithms capable of processing video streams in real time [8]. The problem at hand is
developing a model using YOLOVS that can accurately detect diverse drone types in various op-
erational scenarios, ensuring robust defense mechanisms against UAV threats.

3. Methodology

Our methodology harnesses the capabilities of YOLOVS for drone detection in video streams. The
YOLOvVS8 model, an advanced iteration in the «You Only Look Once» series, was selected for its
computational efficiency and high precision in object detection tasks. Our approach utilized a
transfer learning paradigm, initializing YOLOv8 with weights pretrained on a comprehensive
dataset to capitalize on pre-established feature detection capabilities. Subsequent fine-tuning on a
drone-specific dataset, inclusive of various UAV classes and contextual backgrounds, aimed to
enhance the model's discriminatory power. The fine-tuning process involved meticulous hyperpa-
rameter optimization, seeking a parsimonious balance between detection latency and accuracy.
Validation was conducted through the stratified k-fold cross-validation to assess generalizability
across unseen data. This iterative training approach, underpinned by continuous performance
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monitoring via loss metrics and mAP scores, ensured the refinement of the model toward optimal
operational efficacy.

In this paper, we focus on detecting drones with an average size of 347.5%283x107.7 mm
(LxWxH) and a speed not exceeding 15 m/s. The chosen input parameters of object detection are
since the most common drone on the battlefield «DJI MAVIC 3» has such characteristics. We use
the IMX219 camera module with a 3264x2464 sensor resolution. Thus, we use 100 m as the av-
erage possible detection distance. We tried to fill our dataset with images of different types of
environments, from empty clear skies to urban landscapes, to test the efficiency of the model in
different environmental scenarios and to analyze which of them is the most favorable and in
which one the model has difficulties in the detection process.

4. YOLOVS architecture and functionality

YOLOVS, an advanced iteration in the YOLO series, utilizes a deep convolutional neural network
(CNN) for efficient object detection. The architecture comprises three main components: the
backbone, the neck, and the head [9].
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Figure 1 — Main components of the YOLOVS architecture [9]
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— The backbone is designed for feature extraction. It uses a series of convolutional layers
to process the input image and extract a set of feature maps at different scales. This part of the
network is critical for identifying various attributes of objects within the image.

— The neck connects the backbone to the head. It processes the feature maps from the
backbone, refining and recombining them. This step is crucial for preparing the features for pre-
cise object detection.

— The head of the network is responsible for making predictions. It uses the processed fea-
ture maps to predict bounding boxes, object classes, and abjectness scores. The head employs a
set of anchor boxes and the predefined shapes that help the model detect objects of various sizes
and shapes efficiently.

You can find the described parts in the picture below (see Fig. 1).

This architecture consists of 53 convolutional layers and employs cross-stage partial con-
nections to improve information flow between different layers [9].

4.1. Method of training the YOLOv8 model to detect UAV

The development of a robust UAV detection system via YOLOVS entailed a systematic training
methodology, initiated by curating a dataset using the Roboflow platform [11], which streamlined
the collection and pre-processing of diverse images of drones (see Fig. 2). The platform provides
a convenient Ul to automate common steps (e.g., collecting training data, assigning classes, and
annotating objects) for training object detection models. The figures below demonstrate how you
can use the platform Ul to perform the steps mentioned above.
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Figure 2 — Drone images within drones dataset located in Roboflow “images” Ul

In object detection tasks, it can be advantageous to start with a singular classification cat-
egory when there is insufficient data to reliably differentiate between subcategories or when the
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distinctions are not critical to the project’s goals. It simplifies the model and reduces the com-
plexity of the task, which can be particularly useful at the early stages of model training or when
the focus is on detecting the presence of any drone as in our case (see Fig. 3).
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Figure 3 — Detection class located in Roboflow “Classes” Ul
The last step in preparing the training dataset for our model is annotation of objects we

want to detect. Therefore, each previously uploaded drone image was carefully annotated to en-
sure accurate training of the model (see Fig. 4).
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Figure 4 — Annotation functional of the Roboflow platform
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The training process, scripted in a Python notebook [12], utilized the Roboflow library to
retrieve the dataset and implemented a series of commands to train the YOLOvV8 model. The key
parameters such as the number of epochs and imgsz (image size) were configured to optimize
model performance for real-world applications (see Fig. 5).

The term «epoch» in machine learning refers to one complete cycle through the full da-
taset during training. In each epoch, the model learns by adjusting its weights to minimize the
error in its predictions. The number of epochs is a hyperparameter that determines how many
times the learning algorithm will work through the entire training dataset. Choosing the number
of epochs typically involves a trade-off: too few may result in an underfit model, while too many
can lead to overfitting, where the model learns the training data too well, including noise and out-
liers, and performs poorly on new, unseen data. We choose 100 epochs in our settings because it
is recommended by the YOLOvVS developers’ value.

The image size (imgsz) is also an important hyperparameter in object detection models. It
determines the resolution at which the input images are processed. The size of 640x640 pixels is
chosen because it is a common standard that balances the need for detail (to detect and classify
objects accurately) with computational efficiency (to train and run the model quickly). It is large
enough to capture relevant features of the objects but not so large that it would require excessive
computational power or memory, which could slow down the training process or make the model
less deployable in environments with limited resources that is very important for us, because as
general aerial surveillance tools need to be portable, which imposes a resource constraint on
them.

[ | !yolo task=detect \
mode=train \
model=yolov8s.pt \
data={dataset.location}/data.yaml \
epochs=100 \
imgsz=640

Figure 5 — Key parameters of the training process

The complete pipeline of model training consists of the following steps:

* Data collection: acquire diverse drone images.

* Data annotation: manually annotate images with bounding boxes.

* Data preprocessing: resize, normalize, and augment data using Roboflow.
* Model configuration: set the YOLOVS parameters and hyperparameters.
* Model training: train YOLOvVS8 with the prepared dataset.

* Model evaluation: validate using metrics like mAP, precision, and recall.
* Model optimization: tune parameters based on validation results.

* Deployment: deploy the trained model for real-time detection.

5. Results of the YOLOv8 model training

The results of the model training process for the detection of UAVs, specifically quadcopters and
octocopters, include both quantitative and qualitative ones and are divided into two samples:
training and validation. Our full dataset of 8 220 images (4 349 images of quadcopters and 3 871
images of octocopters) was divided into samples in the following ratio: 60 % for training, 20 %
for validation, and 20 % for testing, according to the best practices in Al training for small sets
(up to a few thousand examples).

The quantitative results comprise a series of graphs that illustrate the model’s perfor-
mance over the training period (see Fig. 6). Prefix «train/» in graph titles represents the training
part and «val/» — the validation one. For all the charts, the X-axis represents the number of
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epochs. Y-axis represents different values depending on the graph type (see Formula 1, 2, 3, 4, 5,
and 6).

Training Graphs
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Figure 6 — Graphs of the model performance over the training period

Loss Metrics. The graphs for train/box_loss, train/cls loss, and train/df1 loss alongside
their validation counterparts (val/box_loss, val/cls loss, and val/dfl loss) exhibit a typical
downward trend, indicative of the model’s improving ability to correctly identify and classify
objects within the training dataset. As the number of epochs increases, the smooth lines illustrate
a consistent reduction in loss, reflecting the model’s increasing accuracy.

The box loss graphs calculate the average squared difference between the predicted
bounding box coordinates and the true bounding box coordinates across all N predictions. Each

prediction i involves comparing the vector of predicted coordinates Y., (such as the center,

width, and height of a box) against the true coordin ates Yy, . It is important because it directly

measures how accurately the model predicts the location and size of the bounding boxes in object
detection tasks. Minimizing this loss is crucial for improving the precision of object localization
in images.

1 onN 2
Box Loss = EZizl (ytruei - ypredi) . (1
The cls_loss graphs are calculated based on Cross-Entropy Loss function. It calculates the
average negative log probability of the correct class C across all N examples. Here Yy, 1s a
binary indicator (0 or 1) if class label C is the correct classification for observation i, and Vpred,

is the predicted probability that observation i belongs to class C. The cross-entropy loss is crucial
for the classification tasks as it penalizes incorrect class predictions. It is especially sensitive to
confident wrong predictions, which is beneficial in training classifiers to output probabilities
close to 0 for wrong classes and close to 1 for the correct class.

Classification Loss = — —Z D W YVirue; . 108 (ypredi,c)‘ (2)

Performance Metrics. In precision and recall graphs, metrics/precision(B) and met-
rics/recall(B) remain high throughout the training epochs, maintaining values close to 1 (0.94
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based on the graphs). This suggests that the model has a high probability of correctly identifying
UAVs when they are present and there is a low rate of false negatives. The Mean Average Preci-
sion (mAP) at different Intersections over Union (IoU) thresholds (metrics/mAP50(B) and met-
rics/mAP50-95(B)) are robust, which is critical for applications where the correct detection of
UAVs is paramount.

Precision is a metric that calculates the ratio of correctly predicted positive observations to
the total predicted positives (the sum of true positives (7P) and false positives (FP)) [13]. It is
important because it shows how reliable the model’s predictions are; the higher the precision, the
more you can trust the model’s positive predictions. It is particularly important in domains where
the cost of false positives is high.

TP
TP+FP’

Precision =

3)

In the recall metric, FN stands for False Negatives — the count of positive cases that were
incorrectly predicted as negative. This metric measures the ability of a model to find all the rele-
vant cases (all positive samples).

TP
TP+FN’ )

The mAP at a single IoU threshold (like 0.50) is the mean of the Average Precision (AP)
scores for all classes Q. AP for a single class is computed by integrating the area under the preci-
sion-recall curve for that class. mAP is an essential metric in object detection because it accounts
for both the precision and recall of the predictions, providing a balanced view of the model’s
overall performance. For our model, it is close to 0.95.

Recall =

1
mAP = = ¥2_, AP, (5)

This variant of mAP is averaged over a range of IoU thresholds, typically from 0.50 to
0.95 in increments (like 0.05). It calculates the average mAP across these thresholds, representing
a more robust measure of the model’s performance at different levels of bounding box overlap.
This comprehensive metric is important as it ensures the model is consistently good across vari-
ous degrees of detection strictness, which is valuable for practical applications where different
conditions/environments may require different precision levels for the detected objects. Based on
our testing, we obtained a value for this metric that is close to 0.59.

1
mAP,u=0.50:095 = ;221 mAPy,. (6)

5.1 Analyzing effectiveness in different environments

Qualitative results provide a visual affirmation of the model’s real-world efficacy. The example
outputs from the test set feature the model’s predictions superimposed on images of various envi-
ronments.

The ability of the model to detect drones in different environmental conditions is extreme-
ly important for its practical application in realistic systems, especially in the military sector, as
the accuracy of the model can affect the outcome of a decision or the lives of personnel and the
integrity of property. Therefore, we have conducted a number of tests. Below there is a photo
report of some tests to illustrate the process, as well as a table describing the other tests that were
not included in the photo report for reasons of keeping the material brief.

Fig. 7 demonstrates the interface of test system [14] for the trained model. The red arrows
indicate that we have the ability to use images or video stream as input parameters of the model
to test in in different environments. You can also access to file with weights for the model that we
use in this paper at this link [15].
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Figure 7 — Test system interface

Figures 8, 9, 10 and 11 are the photo report. Real values of such parameters as confidence,
class of detection, and boxes coordinate you can find in each figure in the low right corner, in the

red box.
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Figure 8 — Result of drone detection in an urban environment
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Figure 11 — Result of drone detection in a marine environment

Table 1 below describes the results of our tests for different environments. The «Environ-
ment» column contains the description of the environment itself. «Count of test» contains epy
count of different images with the same environmental condition that was used in the test. «Avg
confidence in %» represents the average result in per cents for confidence value that was obtained
from the run of a set of tests based on the «Count of test» column.

Table 1 — Result of test in different environments

Environment Count of tests Avg confidence in %
Urban 30 81
Mountains 20 68
Mixed 50 79
Sky 200 89
Low light sky 100 53
Low light urban 20 65
Sea 20 82
Earth (the view from top to 40 73
down)

Analyzing the results of testing, we can take notice of the following:

— The best result of detection we got in case when a drone was in high contrast back-
ground such as sky, sea, or earth. It is expected because in this case the model can find more fea-
tures of an object and distinguish it from the background.

— The detection of drones on the earth background gives worse results than in the sky be-
cause in most of our test cases the drone has a black or dark color and it increases the chances
that the drone’s features would blend in with the color of the ground.
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— The detection in low-light conditions was a real challenge for the model. We should
think about how we can increase confidence in this environment in the next version of the model.

6. Conclusions

The application of YOLOvS8 for UAV detection in video streams has demonstrated promising
results. During the sequence of experiments, we have found out the balance between hyperpa-
rameters (such as epochs and imgsz) to get the best result on real-time data that was confirmed by
the training graphs which have shown a consistent decrease in loss metrics, suggesting that the
model has learned to detect UAVs effectively. Regardless of the type of drone design (quadcopter
or octocopter), the precision and recall metrics are consistently high close to 0.95 and 0.92 corre-
sponding, indicating a reliable model. Qualitative assessments through the test examples further
validate the model’s practical utility. The project underscores the potential of YOLOVS in enhanc-
ing aerial defense mechanisms by accurately identifying UAV threats in diverse environments.
Also, we found out that environments with high contrast backgrounds such as sky (~89% of de-
tection confidence) or sea (~82% of detection confidence) have higher confidence values because
it allows the model to detect object features easier than in environments with low light or uneven
background. Further developing our image data set to include more types of environmental condi-
tions and UAV classes should increase the precision of detection in complex scenarios and in-
crease the value of mAP; - 50.0 95 metric especially in low-light condition.
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