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Анотація. Актуальність теми статті визначається все більшою поширеністю безпілотних літа-

льних апаратів (БПЛА) не тільки в цивільній, а й у військовій сфері, де вони створюють значні 

проблеми протиповітряної оборони. У роботі представлено практичну перевірку можливості та 

ефективності використання моделі YOLOv8 для виявлення квадрокоптерів та октокоптерів у 

відеопотоках, яка призначена для виявлення об’єктів у реальному часі та сегментації зображення. 

Використовується метод навчання, який адаптує модель YOLOv8 шляхом застосування підходу 

«transfer learning» для коригування попередньо навчених вагових коефіцієнтів YOLOv8 до даних, що 

стосуються дронів. Також досліджується здатність моделі ефективно працювати в різних умо-

вах зовнішнього середовища. Проведені експерименти демонструють ефективність розробленого 

методу для точної ідентифікації БПЛА в різних ситуаціях, що робить його важливим для вдоско-

налення засобів повітряного спостереження та механізмів безпеки. Дослідження також аналізує 

адаптивність моделі до мінливих умов спостереження, забезпечуючи її надійність при обробці 

зображень і відео. Результати вказують на високий потенціал моделі YOLOv8 у підвищенні мож-

ливостей систем протиповітряної оборони та зміцненні заходів безпеки проти загроз БПЛА. Крім 

того, у статті обговорюється обчислювальна ефективність моделі, підкреслюється її здатність 

обробляти відеопотоки в реальному часі з мінімальними обчислювальними ресурсами. Оцінено по-

казники precision та recall моделі, що демонструє її здатність точно виявляти БПЛА з мінімізаці-

єю помилкових спрацьовувань. Загалом результати підкреслюють важливість використання пере-

дових методів машинного навчання для ефективного виявлення БПЛА. 

Ключові слова: безпілотні літальні апарати, YOLOv8, квадрокоптери, октокоптери, протиповіт-

ряна оборона, обробка відеопотоку, виявлення об’єктів, спостереження в реальному часі, transfer 

learning, обчислювальна ефективність, точність і запам’ятовування, виявлення дронів. 

 
Abstract. The relevance of the topic of the article is determined by the growing prevalence of unmanned 

aerial vehicles (UAVs) not only in the civilian but also in the military field, where they create significant 

problems for air defense. The paper presents a practical test of the possibility and effectiveness of using 

the YOLOv8 model for detecting quadcopters and octocopters in video streams, which is designed for 

real-time object detection and image segmentation. A training method is used that adapts the YOLOv8 

model by applying a «transfer learning» approach to adjust pre-trained YOLOv8 weights to drone-specific 

data. The ability of the model to work effectively in various environmental conditions is investigated, too. 

The conducted experiments demonstrate the efficiency of the developed method to accurately identify 

UAVs in various situations, which makes it important for improving aerial surveillance tools and security 

mechanisms. The study also explores the model’s adaptability to changing observation conditions, ensur-

ing its robustness in processing images and video. The results indicate the high potential of the YOLOv8 

model in enhancing the capabilities of air defense systems and bolstering security measures against UAV 

threats. Additionally, the article discusses the computational efficiency of the model, highlighting its abil-

ity to process video streams in real time with minimal computational resources. The precision and recall 

metrics of the model are evaluated, demonstrating its ability to accurately detect UAVs while minimizing 
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false positives. Overall, the findings underscore the importance of leveraging advanced machine-learning 

techniques for effective UAV detection. 

Keywords: unmanned aerial vehicles, YOLOv8, quadcopters, octocopters, air defense, video stream pro-

cessing, object detection, real-time surveillance, transfer learning, computational efficiency, precision and 

recall, drone detection. 
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1. Introduction 

In the modern era, the sky has become a bustling highway for an ever-increasing fleet of un-

manned aerial vehicles (UAVs), popularly known as drones. Their ascent has been meteoric, find-

ing roles in a broad array of activities from capturing breathtaking aerial photography to being the 

main actor in modern war conflicts (the Russo-Ukrainian war). 

The rapid growth and development of drone technology have raised the issue of counter-

ing drones [1, 2]. For example, in our current realities, enemy military drones are constantly con-

ducting aerial reconnaissance of our positions, making kamikaze raids on personnel and equip-

ment, and no less importantly, adjusting artillery fire. All of these emphasize the need for reliable 

detection systems for small and medium-sized aircraft [3–6]. The detection challenge is height-

ened by the diversity of different types of drones, such as quadcopters and octocopters, each with 

unique flight patterns and risk profiles. 

Into this breach steps YOLOv8 [7], the latest iteration in the acclaimed «You Only Look 

Once» series, lauded for its lightning-fast object detection capabilities. This paper delves into the 

utilization of YOLOv8 as a sentinel in the sky, tasked with the identification and tracking of these 

UAVs in real-time video feeds. We chart the model’s learning trajectory, elucidated by the train-

ing graphs, and scrutinize its field performance through a series of test set examples. 

The aim of the article is to merge cutting-edge machine-learning techniques with the 

pressing need for aerial oversight. We explore the potential of YOLOv8 to not just see but to un-

derstand the skies. 

 

2. Problem statement 

The proliferation of drones presents a multifaceted challenge in modern aerial defense, particular-

ly in conflict zones where they play pivotal roles in reconnaissance, offensive operations, and 

artillery coordination. Conventional detection systems often struggle to identify and track these 

agile machines, particularly smaller models like quadcopters and octocopters that can maneuver 

with a low radar cross-section. YOLOv8 offers a potential solution with its advanced object de-

tection algorithms capable of processing video streams in real time [8]. The problem at hand is 

developing a model using YOLOv8 that can accurately detect diverse drone types in various op-

erational scenarios, ensuring robust defense mechanisms against UAV threats. 

 

3. Methodology 

Our methodology harnesses the capabilities of YOLOv8 for drone detection in video streams. The 

YOLOv8 model, an advanced iteration in the «You Only Look Once» series, was selected for its 

computational efficiency and high precision in object detection tasks. Our approach utilized a 

transfer learning paradigm, initializing YOLOv8 with weights pretrained on a comprehensive 

dataset to capitalize on pre-established feature detection capabilities. Subsequent fine-tuning on a 

drone-specific dataset, inclusive of various UAV classes and contextual backgrounds, aimed to 

enhance the model's discriminatory power. The fine-tuning process involved meticulous hyperpa-

rameter optimization, seeking a parsimonious balance between detection latency and accuracy. 

Validation was conducted through the stratified k-fold cross-validation to assess generalizability 

across unseen data. This iterative training approach, underpinned by continuous performance 
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monitoring via loss metrics and mAP scores, ensured the refinement of the model toward optimal 

operational efficacy. 

In this paper, we focus on detecting drones with an average size of 347.5×283×107.7 mm 

(L×W×H) and a speed not exceeding 15 m/s. The chosen input parameters of object detection are 

since the most common drone on the battlefield «DJI MAVIC 3» has such characteristics. We use 

the IMX219 camera module with a 3264×2464 sensor resolution. Thus, we use 100 m as the av-

erage possible detection distance. We tried to fill our dataset with images of different types of 

environments, from empty clear skies to urban landscapes, to test the efficiency of the model in 

different environmental scenarios and to analyze which of them is the most favorable and in 

which one the model has difficulties in the detection process. 

 

4. YOLOv8 architecture and functionality 

YOLOv8, an advanced iteration in the YOLO series, utilizes a deep convolutional neural network 

(CNN) for efficient object detection. The architecture comprises three main components: the 

backbone, the neck, and the head [9]. 

 

Figure 1 — Main components of the YOLOv8 architecture [9] 
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– The backbone is designed for feature extraction. It uses a series of convolutional layers 

to process the input image and extract a set of feature maps at different scales. This part of the 

network is critical for identifying various attributes of objects within the image. 

– The neck connects the backbone to the head. It processes the feature maps from the 

backbone, refining and recombining them. This step is crucial for preparing the features for pre-

cise object detection. 

– The head of the network is responsible for making predictions. It uses the processed fea-

ture maps to predict bounding boxes, object classes, and abjectness scores. The head employs a 

set of anchor boxes and the predefined shapes that help the model detect objects of various sizes 

and shapes efficiently. 

You can find the described parts in the picture below (see Fig. 1). 

This architecture consists of 53 convolutional layers and employs cross-stage partial con-

nections to improve information flow between different layers [9]. 

 

4.1. Method of training the YOLOv8 model to detect UAV 

The development of a robust UAV detection system via YOLOv8 entailed a systematic training 

methodology, initiated by curating a dataset using the Roboflow platform [11], which streamlined 

the collection and pre-processing of diverse images of drones (see Fig. 2). The platform provides 

a convenient UI to automate common steps (e.g., collecting training data, assigning classes, and 

annotating objects) for training object detection models. The figures below demonstrate how you 

can use the platform UI to perform the steps mentioned above. 

 

 

Figure 2 ― Drone images within drones dataset located in Roboflow “images” UI 

 

In object detection tasks, it can be advantageous to start with a singular classification cat-

egory when there is insufficient data to reliably differentiate between subcategories or when the 
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distinctions are not critical to the project’s goals. It simplifies the model and reduces the com-

plexity of the task, which can be particularly useful at the early stages of model training or when 

the focus is on detecting the presence of any drone as in our case (see Fig. 3). 

 

 

Figure 3 ― Detection class located in Roboflow “Classes” UI 

 

The last step in preparing the training dataset for our model is annotation of objects we 

want to detect. Therefore, each previously uploaded drone image was carefully annotated to en-

sure accurate training of the model (see Fig. 4). 

 

 

Figure 4 ― Annotation functional of the Roboflow platform 
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The training process, scripted in a Python notebook [12], utilized the Roboflow library to 

retrieve the dataset and implemented a series of commands to train the YOLOv8 model. The key 

parameters such as the number of epochs and imgsz (image size) were configured to optimize 

model performance for real-world applications (see Fig. 5). 

The term «epoch» in machine learning refers to one complete cycle through the full da-

taset during training. In each epoch, the model learns by adjusting its weights to minimize the 

error in its predictions. The number of epochs is a hyperparameter that determines how many 

times the learning algorithm will work through the entire training dataset. Choosing the number 

of epochs typically involves a trade-off: too few may result in an underfit model, while too many 

can lead to overfitting, where the model learns the training data too well, including noise and out-

liers, and performs poorly on new, unseen data. We choose 100 epochs in our settings because it 

is recommended by the YOLOv8 developers’ value. 

The image size (imgsz) is also an important hyperparameter in object detection models. It 

determines the resolution at which the input images are processed. The size of 640x640 pixels is 

chosen because it is a common standard that balances the need for detail (to detect and classify 

objects accurately) with computational efficiency (to train and run the model quickly). It is large 

enough to capture relevant features of the objects but not so large that it would require excessive 

computational power or memory, which could slow down the training process or make the model 

less deployable in environments with limited resources that is very important for us, because as 

general aerial surveillance tools need to be portable, which imposes a resource constraint on 

them. 

 

Figure 5 ― Key parameters of the training process 

 

The complete pipeline of model training consists of the following steps: 

• Data collection: acquire diverse drone images. 

• Data annotation: manually annotate images with bounding boxes. 

• Data preprocessing: resize, normalize, and augment data using Roboflow. 

• Model configuration: set the YOLOv8 parameters and hyperparameters. 

• Model training: train YOLOv8 with the prepared dataset. 

• Model evaluation: validate using metrics like mAP, precision, and recall. 

• Model optimization: tune parameters based on validation results. 

• Deployment: deploy the trained model for real-time detection. 

 

5. Results of the YOLOv8 model training 

The results of the model training process for the detection of UAVs, specifically quadcopters and 

octocopters, include both quantitative and qualitative ones and are divided into two samples: 

training and validation. Our full dataset of 8 220 images (4 349 images of quadcopters and 3 871 

images of octocopters) was divided into samples in the following ratio: 60 % for training, 20 % 

for validation, and 20 % for testing, according to the best practices in AI training for small sets 

(up to a few thousand examples).  

The quantitative results comprise a series of graphs that illustrate the model’s perfor-

mance over the training period (see Fig. 6). Prefix «train/» in graph titles represents the training 

part and «val/» ― the validation one. For all the charts, the X-axis represents the number of 
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epochs. Y-axis represents different values depending on the graph type (see Formula 1, 2, 3, 4, 5, 

and 6). 

 

 

Figure 6 ― Graphs of the model performance over the training period 

 

Loss Metrics. The graphs for train/box_loss, train/cls_loss, and train/df1_loss alongside 

their validation counterparts (val/box_loss, val/cls_loss, and val/df1_loss) exhibit a typical 

downward trend, indicative of the model’s improving ability to correctly identify and classify 

objects within the training dataset. As the number of epochs increases, the smooth lines illustrate 

a consistent reduction in loss, reflecting the model’s increasing accuracy. 

The box_loss graphs calculate the average squared difference between the predicted 

bounding box coordinates and the true bounding box coordinates across all 𝑁 predictions. Each 

prediction 𝑖 involves comparing the vector of predicted coordinates 
ipredy  (such as the center, 

width, and height of a box) against the true coordin ates 
itruey . It is important because it directly 

measures how accurately the model predicts the location and size of the bounding boxes in object 

detection tasks. Minimizing this loss is crucial for improving the precision of object localization 

in images. 

Box Loss =
1

𝑁
∑ (𝑦true𝑖

− 𝑦pred𝑖
)

2
𝑁
𝑖=1 .                                      (1) 

The cls_loss graphs are calculated based on Cross-Entropy Loss function. It calculates the 

average negative log probability of the correct class 𝐶 across all 𝑁 examples. Here 𝑦true𝑖,𝑐
 is a 

binary indicator (0 or 1) if class label 𝐶 is the correct classification for observation 𝑖, and 𝑦pred𝑖,𝑐
 

is the predicted probability that observation 𝑖 belongs to class 𝐶. The cross-entropy loss is crucial 

for the classification tasks as it penalizes incorrect class predictions. It is especially sensitive to 

confident wrong predictions, which is beneficial in training classifiers to output probabilities 

close to 0 for wrong classes and close to 1 for the correct class. 

Classification Loss = −
1

𝑁
∑ ∑ 𝑦true𝑖,𝑐

𝐶
𝑐=1 log (𝑦pred𝑖,𝑐

)𝑁
𝑖=1 .                           (2) 

Performance Metrics. In precision and recall graphs, metrics/precision(B) and met-

rics/recall(B) remain high throughout the training epochs, maintaining values close to 1 (0.94 
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based on the graphs). This suggests that the model has a high probability of correctly identifying 

UAVs when they are present and there is a low rate of false negatives. The Mean Average Preci-

sion (mAP) at different Intersections over Union (IoU) thresholds (metrics/mAP50(B) and met-

rics/mAP50-95(B)) are robust, which is critical for applications where the correct detection of 

UAVs is paramount. 

Precision is a metric that calculates the ratio of correctly predicted positive observations to 

the total predicted positives (the sum of true positives (TP) and false positives (FP)) [13]. It is 

important because it shows how reliable the model’s predictions are; the higher the precision, the 

more you can trust the model’s positive predictions. It is particularly important in domains where 

the cost of false positives is high. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.                                                      (3) 

In the recall metric, FN stands for False Negatives ― the count of positive cases that were 

incorrectly predicted as negative. This metric measures the ability of a model to find all the rele-

vant cases (all positive samples). 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
.                                                       (4) 

The mAP at a single IoU threshold (like 0.50) is the mean of the Average Precision (AP) 

scores for all classes Q. AP for a single class is computed by integrating the area under the preci-

sion-recall curve for that class. mAP is an essential metric in object detection because it accounts 

for both the precision and recall of the predictions, providing a balanced view of the model’s 

overall performance. For our model, it is close to 0.95. 

mAP =
1

𝑄
∑ 𝐴𝑃𝑞

𝑄
𝑞=1 .                                                    (5) 

This variant of mAP is averaged over a range of IoU thresholds, typically from 0.50 to 

0.95 in increments (like 0.05). It calculates the average mAP across these thresholds, representing 

a more robust measure of the model’s performance at different levels of bounding box overlap. 

This comprehensive metric is important as it ensures the model is consistently good across vari-

ous degrees of detection strictness, which is valuable for practical applications where different 

conditions/environments may require different precision levels for the detected objects. Based on 

our testing, we obtained a value for this metric that is close to 0.59. 

mAPIoU=0.50:0.95 =
1

𝑇
∑ 𝑚𝐴𝑃IoU𝑡

𝑇
𝑡=1 .                                         (6) 

 

5.1 Analyzing effectiveness in different environments 

Qualitative results provide a visual affirmation of the model’s real-world efficacy. The example 

outputs from the test set feature the model’s predictions superimposed on images of various envi-

ronments. 

The ability of the model to detect drones in different environmental conditions is extreme-

ly important for its practical application in realistic systems, especially in the military sector, as 

the accuracy of the model can affect the outcome of a decision or the lives of personnel and the 

integrity of property. Therefore, we have conducted a number of tests. Below there is a photo 

report of some tests to illustrate the process, as well as a table describing the other tests that were 

not included in the photo report for reasons of keeping the material brief. 

Fig. 7 demonstrates the interface of test system [14] for the trained model. The red arrows 

indicate that we have the ability to use images or video stream as input parameters of the model 

to test in in different environments. You can also access to file with weights for the model that we 

use in this paper at this link [15]. 
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Figure 7 ― Test system interface 

 

Figures 8, 9, 10 and 11 are the photo report. Real values of such parameters as confidence, 

class of detection, and boxes coordinate you can find in each figure in the low right corner, in the 

red box. 

 

 

Figure 8 ― Result of drone detection in an urban environment 
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Figure 9 ― Result of drone detection in a mountain environment 

 

 

 

Figure 10 ― Result of drone detection in a mix environment from another drone camera 
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Figure 11 ― Result of drone detection in a marine environment 

 

Table 1 below describes the results of our tests for different environments. The «Environ-

ment» column contains the description of the environment itself. «Count of test» contains еру 

count of different images with the same environmental condition that was used in the test. «Avg 

confidence in %» represents the average result in per cents for confidence value that was obtained 

from the run of a set of tests based on the «Count of test» column. 

 

Table 1 ― Result of test in different environments 

Environment Count of tests Avg confidence in % 

Urban 30 81 

Mountains 20 68 

Mixed 50 79 

Sky 200 89 

Low light sky 100 53 

Low light urban 20 65 

Sea 20 82 

Earth (the view from top to 

down) 
40 73 

 

Analyzing the results of testing, we can take notice of the following: 

– The best result of detection we got in case when a drone was in high contrast back-

ground such as sky, sea, or earth. It is expected because in this case the model can find more fea-

tures of an object and distinguish it from the background. 

– The detection of drones on the earth background gives worse results than in the sky be-

cause in most of our test cases the drone has a black or dark color and it increases the chances 

that the drone’s features would blend in with the color of the ground. 
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– The detection in low-light conditions was a real challenge for the model. We should 

think about how we can increase confidence in this environment in the next version of the model. 

 

6. Conclusions 

The application of YOLOv8 for UAV detection in video streams has demonstrated promising 

results. During the sequence of experiments, we have found out the balance between hyperpa-

rameters (such as epochs and imgsz) to get the best result on real-time data that was confirmed by 

the training graphs which have shown a consistent decrease in loss metrics, suggesting that the 

model has learned to detect UAVs effectively. Regardless of the type of drone design (quadcopter 

or octocopter), the precision and recall metrics are consistently high close to 0.95 and 0.92 corre-

sponding, indicating a reliable model. Qualitative assessments through the test examples further 

validate the model’s practical utility. The project underscores the potential of YOLOv8 in enhanc-

ing aerial defense mechanisms by accurately identifying UAV threats in diverse environments. 

Also, we found out that environments with high contrast backgrounds such as sky (~89% of de-

tection confidence) or sea (~82% of detection confidence) have higher confidence values because 

it allows the model to detect object features easier than in environments with low light or uneven 

background. Further developing our image data set to include more types of environmental condi-

tions and UAV classes should increase the precision of detection in complex scenarios and in-

crease the value of mAPIoU=0.50:0.95 metric especially in low-light condition. 

 

REFERENCES 

1. Taha B., Shoufan A. Machine Learning-Based Drone Detection and Classification: State-of-the-Art in 

Research. IEEE Access. 2019. N 7. Р. 138669–138682. DOI: https://doi.org/10.1109/ 

ACCESS.2019.2942944. 

2. Samaras S., Diamantidou E., Ataloglou D., Sakellariou N., Vafeiadis A., Magoulianitis V., Lalas A., 

Dimou A., Zarpalas D., Votis K. et al. Deep Learning on Multi Sensor Data for Counter UAV Applica-

tions-A Systematic Review. Sensors. 2019. N 19. P. 4837. DOI: https://doi.org/10.3390/s19224837. 

3. Mendis G.J., Randeny T., Wei J., Madanayake A. Deep learning based doppler radar for micro UAS 

detection and classification. Proc. of the MILCOM 2016. IEEE Military Communications Conference 

(Baltimore, MD, USA, November 1–3 2016). Baltimore, MD, USA, 2016. P. 924–929. 

4. Ganti S.R., Kim Y. Implementation of detection and tracking mechanism for small UAS. Proc. of the 

International Conference on Unmanned Aircraft Systems (ICUAS) (Arlington, VA, USA, June 7–10 2016). 

Arlington, VA, USA, 2016. P. 1254–1260. 

5. Hommes A., Shoykhetbrod A., Noetel D., Stanko S., Laurenzis M., Hengy S., Christnacher F. Detection 

of Acoustic, Electro-Optical and Radar Signatures of Small Unmanned Aerial Vehicles. Proc. of the SPIE 

Security + Defence (Edinburgh, UK, September 26–29 2016). Edinburgh, UK, 2016. P. 1–4. 

6. Ezuma M., Erden F., Anjinappa C.K., Ozdemir O., Guvenc I. Micro-UAV Detection and Classification 

from RF Fingerprints Using Machine Learning Techniques. Proc. of the IEEE Conference on Aerospace  

(Big Sky, MT, USA, March 2–9, 2019). Big Sky, MT, USA, 2019. 

URL: https://scholar.google.com/scholar_lookup?journal=Proceedings+of+the+CIE+International+Confer

ence+on+Radar+(RADAR)&title=Multi-mode+SDR+radar+platform+for+small+air-vehicle+Drone 

+detection&author=Y.+Kwag&author=I.+Woo&author=H.+Kwak&author=Y.+Jung&pages=1-4&. 

7. Ultralytics/ultralytics. GitHub repo. URL: https://github.com/ultralytics/ultralytics. 

8. Unlu E., Zenou E., Riviere N., Dupouy P.E. Deep learning-based strategies for the detection and track-

ing of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 2019. N 11. P. 7. DOI: 

https://doi.org/10.1186/s41074-019-0059-x. 

9. Boesch G. A Guide to YOLOv8 in 2024. URL: https://viso.ai/deep-learning/yolov8-guide/. 

10. VK. YoloV8 Architecture & Cow Counter With Region Based Dragging Using YoloV8. URL: 

https://medium.com/@VK_Venkatkumar/yolov8-architecture-cow-counter-with-region-based-dragging-

using-yolov8-e75b3ac71ed8#:~:text=The%20architecture%20of%20YOLOv8%20builds, 

the%20backbone%20and%20the%20head.&text=A%20modified%20version%20of%20the%20CSPDark

net53%20architecture%20forms%20the%20backbone%20of%20YOLOv8. 

https://doi.org/10.1109/
https://scholar.google.com/scholar_lookup?journal=Proceedings+of+the+CIE+International+Conference+on+Radar+(RADAR)&title=Multi-mode+SDR+radar+platform+for+small+air-vehicle+Drone%20+detection&author=Y.+Kwag&author=I.+Woo&author=H.+Kwak&author=Y.+Jung&pages=1-4&
https://scholar.google.com/scholar_lookup?journal=Proceedings+of+the+CIE+International+Conference+on+Radar+(RADAR)&title=Multi-mode+SDR+radar+platform+for+small+air-vehicle+Drone%20+detection&author=Y.+Kwag&author=I.+Woo&author=H.+Kwak&author=Y.+Jung&pages=1-4&
https://scholar.google.com/scholar_lookup?journal=Proceedings+of+the+CIE+International+Conference+on+Radar+(RADAR)&title=Multi-mode+SDR+radar+platform+for+small+air-vehicle+Drone%20+detection&author=Y.+Kwag&author=I.+Woo&author=H.+Kwak&author=Y.+Jung&pages=1-4&
https://github.com/ultralytics/ultralytics
https://medium.com/@VK_Venkatkumar/yolov8-architecture-cow-counter-with-region-based-dragging-using-yolov8-e75b3ac71ed8#:~:text=The%20architecture%20of%20YOLOv8%20builds, the%20backbone%20and%20the%20head.&text=A%20modified%20version%20of%20the%20CSPDarknet53%20architecture%20forms%20the%20backbone%20of%20YOLOv8
https://medium.com/@VK_Venkatkumar/yolov8-architecture-cow-counter-with-region-based-dragging-using-yolov8-e75b3ac71ed8#:~:text=The%20architecture%20of%20YOLOv8%20builds, the%20backbone%20and%20the%20head.&text=A%20modified%20version%20of%20the%20CSPDarknet53%20architecture%20forms%20the%20backbone%20of%20YOLOv8
https://medium.com/@VK_Venkatkumar/yolov8-architecture-cow-counter-with-region-based-dragging-using-yolov8-e75b3ac71ed8#:~:text=The%20architecture%20of%20YOLOv8%20builds, the%20backbone%20and%20the%20head.&text=A%20modified%20version%20of%20the%20CSPDarknet53%20architecture%20forms%20the%20backbone%20of%20YOLOv8
https://medium.com/@VK_Venkatkumar/yolov8-architecture-cow-counter-with-region-based-dragging-using-yolov8-e75b3ac71ed8#:~:text=The%20architecture%20of%20YOLOv8%20builds, the%20backbone%20and%20the%20head.&text=A%20modified%20version%20of%20the%20CSPDarknet53%20architecture%20forms%20the%20backbone%20of%20YOLOv8


ISSN 1028-9763. Математичні машини і системи. 2024. № 2                                                                                  77 

11. Skalski P. How to Train YOLOv8 Object Detection on a Custom Dataset. URL: 

https://blog.roboflow.com/how-to-train-yolov8-on-a-custom-dataset/. 

12. Train script. Colab. URL: https://colab.research.google.com/drive/1OwQJgBxcEHnKK3Jsp29 RgK-

cHPfNjeCGw?usp=sharing#scrollTo=FBRvV5I3TMxT. 

13. Confusion Matrix. WIKI. URL: https://en.wikipedia.org/wiki/Confusion_matrix. 

14. Universe, webtool for test YOLOv8 models. URL: https://universe.roboflow.com/. 

15. Trained model. Google Drive. URL: https://drive.google.com/file/d/14qlQScwKVd6S6GPHV7 

CA11oN7i1y69eU/view. 

 

Стаття надійшла до редакції 02.04.2024 

https://blog.roboflow.com/how-to-train-yolov8-on-a-custom-dataset/
https://colab.research.google.com/drive/1OwQJgBxcEHnKK3Jsp29%20RgKcHPfNjeCGw?usp=sharing#scrollTo=FBRvV5I3TMxT
https://colab.research.google.com/drive/1OwQJgBxcEHnKK3Jsp29%20RgKcHPfNjeCGw?usp=sharing#scrollTo=FBRvV5I3TMxT
https://en.wikipedia.org/wiki/Confusion_matrix
https://universe.roboflow.com/
https://drive.google.com/file/d/14qlQScwKVd6S6GPHV7%20CA11oN7i1y69eU/view
https://drive.google.com/file/d/14qlQScwKVd6S6GPHV7%20CA11oN7i1y69eU/view

